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Experiments in Diffraction Using Optical Crystals and Computer Simulation

Synopsis

The goal of this project was to develop a laboratory experiment on diffraction which integrated

the following elements:
(a) existing and newly developed “optical crystals”
(b) graphics, tutorials, and simulations available on the web

¢) brief overview of some of the key concepts of diffraction and crystal structure, to
y Y ry
provide context for the “hands-on” work with the optical crystals and computer

simulations.

Most of the material is related to two-dimensional geometry and analysis, although some
references are made to three-dimensional crystal geometry, where it’s thought that these
references would be helpful to allow the students to correlate the analytical or experimental

results with real crystals and crystallographic techniques.

The intent of including the “overview” material is to re-familiarize students, who have had at
least some background in optical physics and materials, with the nomenclature and mathematics
relevant to the diffraction experiments. The information is presented assuming only general
background or limited recall of these topics. It is not possible to provide a comprehensive
treatment of all the necessary topics in a short paper, but references are provided for students

who want more background.

The new optical crystal slides developed for this project are described in Appendix A. The
patterns on these slides are designed to quickly demonstrate important concepts, by showing the
effect of changing one feature at a time. For example, one slide which has four patterns of atoms
of slightly different sizes, while the shape of the atom and the lattice geometry is the same.
Another example is a slide which has four patterns of atoms of different shapes, while the size of
the atoms is approximately the same, and again the lattice geometry is unchanged. See Figure S
— 1 for the real space and diffraction pattern photographs from the slide with atoms of different

shapes.
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Figure S— 1. Example of one of the new optical crystal slides developed for this project

The computer simulations provide even more flexibility than the optical crystals for the student
to quickly investigate the effects of changing size or shape of the motif, or the lattice geometry,
and other parameters. Figure S — 2 shows an example of how the computer simulation output is
used to help demonstrate the relationship between the Fourier transforms of the motif and the

lattice, and the “net” Fourier transform of the convolution of the motif and lattice.
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Figure S —2: Example of how the computer simulation output is used to demonstrate concepts
(from Section 6 “Convolution”)
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One of the important new features of this project was to integrate the use of the computer
simulations with the use of the optical crystal slides. This was accomplished by using the same
real space patterns for both the optical crystal slides and as input to the computer simulation - see
Figure S — 3 as an example. Showing direct correlation between the observed results from the
optical crystal slides and the calculated results from the computer simulation (and allowing the

students to demonstrate this for themselves), provides the students both better understanding and

confidence in the meaning of each.
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Figure S — 3: Example of how the computer simulation output and the optical crystal slides are
integrated (from Section 8 “Symmetry of the Crystal Lattice and the Diffraction Pattern”)
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Overview

This project was to develop a laboratory experiment on diffraction. My goal in developing this
project was to integrate some very useful and interesting interactive material available on the
web, with some new slides (two-dimensional “optical crystals”) developed by Robert Bachilla,
Dr. Larry Sorensen, and myself over the past several months.

Robert and I started meeting with Dr. Sorensen in the fall of 2005, with the original goal of
replacing the 1973 “optical crystals” that were being used in the Physics 575 laboratory class.
The idea was not just to replace them, but also to expand the patterns, to be able to show
additional concepts and to thereby allow the students to gain better and broader understanding of
diffraction. In order to strategize what to show, we began researching literature and material on
the web. The interactive programs on the web were so helpful, easy to use and yet powerful, that
we began discussing how to integrate the web material with the “hands-on” laboratory work with
the optical crystals.

Replacing the optical crystals turned out to be far more difficult than we had originally
envisioned. The popularity of digital photography has resulted in decreased availability of high
resolution “analog” photography materials. Robert Bachilla conducted extensive research into
digital methods, but the dynamic range currently available via digital methods is still not
sufficient to produce optical crystals usable with lasers. He was successful in finding a high
resolution black and white film for generating slides, and his investigation and production was
the subject of his Master’s thesis last Fall. Several of his photographs are incorporated into this
paper, and all of his slides will hopefully be used as part of the laboratory lesson plan.

At Dr. Sorensen’s suggestion, | have also investigated commercial microfiche as a way to
generate the optical crystals. While fewer and fewer options are commercially available for
microfiche (again, due to the popularity of digital mediums for storage), this process was shown
to be successful for generating optical crystals.

While Robert was photographing his patterns, he kindly photographed the patterns I had
generated. | had developed a small number of patterns designed to quickly show some key
concepts in diffraction — the effect of the atom and the lattice size and shape, and the effects of
imperfections due to thermal effects or crystal “stacking errors”. Robert was wonderful to work
with throughout this project, and demonstrated skill and persistence in researching methods and
producing several beautiful and interesting new sets of optical crystals.

I owe both Robert and Dr. Sorensen huge thanks for all of their help and patience as we worked
together to generate materials for an updated 2-D Diffraction laboratory lesson. Throughout my
Master’s studies in the Application of Physics, I have been particularly fascinated with light,
optics and diffraction, I think because the physics describing light is elegantly simple in theory
and yet endlessly complex in real-life applications.
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1. Introduction

The purpose of this experiment is to gain a better understanding of the physics of diffraction by
using optical crystals (two-dimensional patterns on slides), and computer simulations. Optical

crystals allow you to use optical wavelengths to investigate the same physics pioneered by von
Laue, W. H. Bragg and W. L. Bragg, and Davisson and Thomson, in their Nobel prizewinning

experiments and analysis. There have been many Nobel Prizes awarded for discoveries related
to diffraction, including:

Von Laue, Nobel prize 1914, for his discovery of the diffraction of X-rays by crystals

W. H. Bragg and W. L. Bragg, Nobel prize 1915, for their analysis of crystal structure by
means of X-rays)

Davisson and Thomson, Nobel prize 1937, for their experimental discovery of the
diffraction of electrons by crystals

After briefly reviewing some of the basic physics of diffraction and of crystal geometry, we’ll
look at how the different structural elements of a crystal affect the diffraction pattern.
Throughout the experiment, we’ll use both the optical crystal slides and computer simulation
programs to illustrate important concepts. These tools are brought together to directly compare
the results of each in the section on dealing with symmetry.

Figure 1 - 1 below shows the arrangement used for producing the optical crystal slides. The
optical crystal slides are intended to be used with lasers (although white light could be used; in
addition, the slides can also be put under a microscope or into a projector to get a better look at
the patterns). The slides show diffraction patterns similar to those which might be seen with X-
rays or electron diffraction through real crystalline materials, but are a lot more practical to use
in the lab.

observation screen

He-Ne laser slide

digital camera

diffraction pattern

Figure 1 — 1: Arrangement for making the “optical crystal” slides (courtesy R. Bachilla)
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2. Review of the Physics of Diffraction

Diffraction describes what happens when a wave interacts with an obstacle. Later on, we’ll see
that the mathematical description of the interaction can be extremely complex, but a simple, one-
dimensional example is straightforward to describe mathematically and useful to review.

Recall that a general solution to the wave equation is

Emt)=E)*exp{i(k-r-owt))}

or in one dimension:

E@xt)=E) *exp {i(kx-ot) }

where E) is the maximum amplitude of the wave, k = the wave vector, which has a magnitude =
271 / X and direction associated with the direction of movement of the wavefront, and w is the
angular velocity = 2n * frequency (in Hz) for the wave. A is the wavelength of the incoming
wave.

One useful way to visualize the interaction is by using Huygens construction, where a plane

wave is treated as the envelope of the little spherical “wavelets” generated by each point on the
wave front.

Figure 2 - 1: Diffraction through a single slit, using Huygens’ construction (from Reference Website #9)

When the plane wave encounters a slit (of a size comparable to the wavelength of the plane
wave), the spherical wavelets will form an interference pattern on the opposite side of the slit
which will depend on the wavelength of the incoming wave, and the size of the slit. If, instead of
a point, we visualize that the “wavelet” is generated by an infinitesimal volume element, dV,
then the effect of the infinitesimal volume element on the wave movement is a function of the
geometry at the volume element f (r) * dV. For the example of a single slit (using the 1-D form
of the equation), f (x) = 1 for the width of the slit, and f (x) = 0 otherwise. The wave diffracted
from an infinitesimal volume element dV is equal to £ (r) * exp { i (k * r-wt) } dV .

Every infinitesimal volume element inside the slit make a contribution to the diffraction pattern
on the other side of the slit, so that:
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Diffracted electric field= E (k) =) f(r;)) *exp {i (k-r;-wt) } AV + 1 (ry) *exp { i (k
‘r-ot) }dVL+ ...

or expressing the summation as an integral:
E(k)=If(r) *exp{ik-r-ot)}dV

Since the integration is carried out for the variable r, the factor of exp { i (-wt) } may be taken
out of the integral. As a practical matter, diffraction experiments involve measurements of the
intensity of diffracted beams (to determine the structure of molecules and crystal structure,
generally, X-rays, but for this experiment, light waves), where the period of measurement is
many orders of magnitude larger than the period of the waves. This means that the measurement
ends up being the time average of the intensity of the diffracted waves, and the factor

exp { i (-wt) } may be dropped from the equation without losing information (it also makes the
equations easier to write). This leaves:

E(k)=[f(r)*exp{i(k-r) }dV
Also note that the diffraction pattern intensity = |E (k) | *= |[f(r) *exp {i (k-¥) } AV |?

What this means is that the diffraction pattern is the Fourier transform of the geometry of the
obstacle(s) doing the diffracting. This is true for one, two, or three dimensions, and for different
geometric arrangements, e.g. the electron distribution in an atom in a crystal lattice, or the
arrangement of the atoms with respect to the crystal lattice, or the geometry of crystal lattice
pattern itself.

Returning to the one dimensional example of a single slit, we use f (x) instead of f (¥), and as
noted above, f (x) = 1 inside the slit and f (x) = 0 elsewhere.

A

k/:
Il ksin

|
o |

v

k. = k sinf

Figure 2 - 2: Geometry of the wave vector
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With the geometry as shown in Figure 1 - 2, kK * r =k, *x = k sinf * x, and the resulting
diffraction pattern is given by:

E (k)= | f(x) * exp { i*k*sin 0% } dx.

The integral should be evaluated from -co to oo, but in the case of a single slit, f (x) is non-zero
only for the width of the slit, 2 * X,. Since f (x) = 1 between —X, and X, the equation becomes:

X :Xo
E (k)= [ exp { i*k*sin 6%« } dx.
x=-Xp

In one dimension, it simplifies the integral to show the diffraction function, normally shown as
E (k), as E (sin 0). The magnitude of k is unchanged by diffraction, since the wavelength is
unchanged, and the direction is dependent on & or sin 6

X :X()
E (sin 0) = [exp { i*k*sin 6*x } dx.
x =-Xo

Using integral tables, this reduces to:
E (sin 0) = 2 * X * (sin o/ a ) where a =k * X, * sin 0.

The sin o/ o function is also called the sinc a function, and has the form shown below:

A
v

NV AV

Figure 2 — 3: Shape of the sinc function
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As noted above, the intensity that is measured for a diffraction patternis I (k) = | E (k) | >
(or | E (sin 6) | %), 50 a graph of intensity looks like this:

Single-slit diffraction pattern

-

Intensity

Figure 2 — 4: Graph and photograph showing the diffraction pattern from a single slit (from Reference Website #1)
Above is a photograph of the diffraction from a single slit, to compare with the intensity plot.

From previous experiments or classes, you probably remember that it doesn’t matter whether you
use a positive or negative object (e.g. a pinhole or a black dot) with a light source. This is called
“Babbinet’s Theorem.” Whether the pattern is opaque on a translucent background, or
translucent on a black (opaque) background, the diffraction patterns end up appearing the same,
except at the origin in precisely the forward direction. Most of the examples we’ll use in the
following sections are opaque dots or other representations of “atoms” instead of slits or
pinholes, but situation is exactly analogous to what we’ve already described for a single slit.

For a simple two-dimensional example, see the discussion and the graphics illustrating the
intensity of the diffraction pattern for a single atom, at the website:

http://www.mineralogie.uni-wuerzburg.de/crystal/teaching/basic_a.html

Notice that this website has links to a variety of interactive tools important for understanding
diffraction. We’ll refer to it again.

For more good examples, take a look at the program “Diffraction and Fourier Transform”, which
can be found at the following website:

http://lcr.epfl.ch/page37304-en.html
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Student exercise #1: Try the “Diffraction and Fourier Transform” program with a single dot of
size = 10, then size = 70. Notice the inverse relationship of size between the dot and the radius
of the first minimum of the diffraction pattern. You can also select a rectangular shape, or draw
an arbitrary shape and see what the Fourier transform is for that shape.

To further demonstrate the effect of the size and shape of an “atom”, use one of the “2D gas”
slides. The size and shape of the diffraction pattern doesn’t change if one or many randomly
placed “atoms” are on a slide (assuming the size and shape of the “atom” doesn’t change), but
the intensity of the pattern is increased if more random “atoms” are used, making it easier to see
the patterns in the lab. Notice how the diffraction pattern varies depending on the shape of the
“atom.” Also, use the slides to observe the reciprocal effect of different size “atoms” on the
diffraction patterns.

Figure 2 — 5: Diffraction pattern produced from a “gas” of large squares

Figure 2 — 6: Diffraction pattern produced from a “gas” of small squares
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Figure 2 — 7: Diffraction pattern produced from a “gas” of large diamonds

Figure 2 — 8: Diffraction pattern produced from a “gas” of dots

Figure 2 — 9: Diffraction pattern produced from a “gas” of rectangles
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Figure 2 — 10: Diffraction pattern produced from a “gas” of crosses (X’s)

Some interesting notes related to the diffraction pattern, and the significance of the
Fourier transform.

(A). the inverse of a Fourier transform (denoted FT ' below) of a function, is the function itself.

E (k) =FT f (x)
f(x)=FT " E (k)

The example most people are familiar with is the use of the Fourier transform to decompose a
periodic waveform, shown in the time domain, into its components in the frequency domain.

S iavie Frequency Specrum

0.5

0.5

o4

0.z

0 1 o
|

1234567 & 910112131415 161715 18

Figure 2 — 11: Fourier composition of a triangle wave (from Reference Website #13)

If you take the inverse Fourier transform of the function in the frequency domain, you will
“recompose” the original waveform in the time domain.

(B). The position vector 7 and the wave vector k (where |k| = 2r / X) are a Fourier transform pair,
or conjugates, similar to time t and frequency ®. Note that ¥ and K are a spatial Fourier
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transform pair, while t and ® are a temporal Fourier transform pair. An inverse relationship
exists between the “width” of each of the variables of the pair. The bigger the slit, for example,
the smaller the diffraction pattern, and vice versa. In the limit of the Dirac delta function
(defined only at one point) representing a slit, the Fourier transform is infinitely broad. The
Heisenberg uncertainty principle applies to the measurement (or even the definition) of position
and momentum (remember that A = h / p where h is Planck’s constant, and p is momentum - this
equation is true for both photons and massive particles such as electron of the particles being
diffracted):

Ax* Ap>h/2.

The inverse, or reciprocal relationship between real space, represented by x in one dimension or

r in three dimensions, and “k space” or “momentum space,” is something we’ll observe over and
over again as we study diffraction in more detail.

Student exercise #2: Explain in your own words why the diffracted intensity is the Fourier
transform of the real structure for an “atom”.

3. Crystal Geometry

A crystal is made up of atoms or molecules in a regular, periodic arrangement. As mentioned
above, the diffraction pattern is given by the Fourier transform of:

a. the size and shape of the macroscopic crystal.
the geometry of the crystal lattice.

c. the arrangement of the atoms or molecules related to the “unit cell” of the crystal
lattice.

d. the arrangement of the electrons in the atoms.

Although the diffraction pattern contains information about item a, it is rarely of interest, since
other means exist for measuring macroscopic crystal size and shape. However, if the
macroscopic crystal is small (or perhaps some kind of masking is used), then there is an effect on
the diffraction pattern. The effect is the inverse of the “crystal building” exercise that you may
have reviewed at this website:

http://www.mineralogie.uni-wuerzburg.de/crystal/teaching/basic_a.html

Or, you can generate a lattice and add a mask in real space using the “Diffraction and Fourier
Transform” program at the following link:

http://lcr.epfl.ch/page37304-en.html

Both sites will let you see the effects of small crystal size or masking.
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Of more practical interest to crystallographers are the effects of b, ¢, and d. In order to discuss
these effects, we will first review crystal structure and nomenclature.

The crystal structure can be thought of as the combination of the crystal lattice (conceptually, a
regular array of imaginary, infinitely small points) and a motif (conceptually, the unit or structure
that is regularly repeated in space). Figure 2 — 1 shows three different crystal structures
generated from the same rectangular lattice, but with different “motifs” (which could represent
different types of atoms or molecules).

s r 7 r s
x - e r s
s x . x x
s ey e s F
ik
1 1 t t 1)
T ] i | t
t t I 1
. ) 1t 1

A A
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A A
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Figure 3 — 1: Rectangular lattice with different motifs. Crystal structure = lattice * motif (from Sherwood, pg. 60)

Crystal Lattice

One requirement of the crystal lattice structure is that it “fill space”, that is, through whatever
appropriate symmetry functions, all space can be filled with the lattice pattern with no gaps. For
example, pentagons can’t make up a plane lattice pattern, because there’s no way to fill space
with pentagons without any gaps. Appendix B is an extract from Reference 2 (Optics, Hecht and
Zajac) which has an excellent discussion of two-dimensional patterns, lattices, and symmetry.

Some of the key concepts from Appendix B include:

(a) You can choose an arbitrary point in the lattice and draw two lines to adjacent points to
define the fundamental lattice vectors, @ and b (in two-dimensions; the lattice vectors are
a, b, and c in three dimensions). The angle between the lattice vectors is ¢ (in two-
dimensions, for three dimensions, a, B, and y are used)
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(b) The fundamental lattice vectors define a parallelogram (or parallelepiped in three
dimensions) which we can call the “unit cell”. While the choice of how to draw the
fundamental lattice vectors may be arbitrary, conventions exist regarding the choice of
the vectors and unit cell.

(c) The vectors are chosen so that the unit cell is generally primitive. A primitive unit cell is
one where each unit cell is associated with a single lattice point.

(d) However, where it’s appropriate to better represent the symmetry of lattice, a non-
primitive unit cell is chosen. A non-primitive unit cell is associated with multiple lattice
points.

(e) There are five plane lattices - these represent 4 lattice systems (oblique, square,
hexagonal, and rectangular), each with a primitive unit cell, and with a non-primitive unit
cell for the rectangular lattice system. The rectangular non-primitive unit cell is called a
centered or incentered cell. Any two-dimensional lattice can be formed from one of
these five plane lattices.

Lattice system | Lattice type Conventional Representative
representation points
Oblique Primitive azb ¢>90° (0, 0)
Square Primitive a=b ¢=90° (0, 0)
Hexagonal Primitive a=b ¢=120° (0,0)
Rectangular Primitive azb ¢=90° (0,0)
Centered azb ¢=90° (0, 0), (%4, '5)

Figure 3 — 2: Plane lattices. (Based on Table 3.1, page 70, Sherwood)

More about Three-dimensional Crystal Lattices

As mentioned above and shown in Figure 2 - 3, the unit cell is defined with lattice vectors a, b,
and c, and the angles between the lattice vectors are called a, 3, and vy.

z

it
Figure 3 — 3: Geometry of the unit cell in three dimensions (from Reference Website #4)

There are 14 space lattice groups (known as the Bravais lattices). The 14 Bravais lattices are
developed by combining one of the seven crystal systems (cubic, hexagonal, tetragonal,
orthorhombic, monoclinic, and triclinic) with one of the lattice centerings (body-centered, face-
centered, or centered on a single face).
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In general, any lattice point in a primitive unit cell can be described in terms of r = pa + qb + rc,
with p, q, and r being integers. If the unit cell is non-primitive, p, q, and r may take on fractional
values. The conventional way of referring to a lattice point is by the ordered triplet (p, g, r) for
example, (0,1,2).

Later on, we’ll need to reference lattice planes. Obviously, there are many planes that can be
drawn through the regularly arranged points of a crystal lattice. In order to define which set of
planes we’re talking about, we’ll use conventional “Miller Indices” (hkl). Miller Indices are
defined as the reciprocals of the fractional intercepts which the plane makes with the lattice

vectors.
i -

Primitive | 5 : [ b T
cubic latiice LA R i a1y
.2 F A T [ Tl
100 planes 110 planes 111 planes
Face-cenired | SR oy =1 .
cubic lattice VI U e ) -
= ) L R itw z L8 S

_220pl nes 111 planes

Ll i P .
Body-centred E s = LJ- ‘:f' =i L -3.- B
cubic lattice f"i/_;"L - / AN A L
<K A "
200 planes 110 planes 222 planes

Miller indices for three types of cubic lattices.

Figure 3 - 4: Examples of Miller indices (from Reference Website #10)

Note that (hkl) is a set of planes, and [Ak/] is a direction. Refer to the following website if you’re
interested in more information about Miller indices:

http://en.wikipedia.org/wiki/Miller index

The Unit Cell or “Motif” of the Crystal

As described above, a unit cell may be primitive (each unit cell associated with a single lattice
point) or non-primitive (unit cell is associated with more than one lattice point). The simplest
possible case is a primitive unit cell with a single element “motif” — for example, the “motif” of
slide B-3 (see Appendix A) is single dot. However, the contents of the unit cell may be
extremely complex, as shown in Figure 3 — 5.
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Figure 3 - 5: Unit cell of fcc plutonium dioxide (from Reference Website #12).

The contents of the unit cell may include many different atoms and molecules. Analysis of the
unit cell requires different information than the analysis of crystal lattice, as discussed in the
following sections.

4. Analysis of the Crystal Lattice Using Diffraction
Techniques

If we neglect for the moment the contents of the unit cell and just consider the diffraction effects
from the lattice points, we can consider each of the lattice points as a perfect point scatterer (i.e.
as a delta function). To calculate the intensity maxima of the resulting diffraction patterns, either
Bragg’s Law or the von Laue equations may be used, with identical results.

Bragg’s Law relates the distance between lattice planes, dpy, and the wavelength of the incoming
wave, A, with the scattering angle, 0. The lattice planes are treated as planes of reflection, and
it’s important to note that the spacing of importance in Bragg’s Law is between the lattice planes,
rather than between the atoms themselves. See the geometry in the diagram below.

Incident v,
plane wave Y
B
\ o ;",J
seers - ﬁ:::n o W
e p"—

d
—a % & g% § S & Constructive interference
¢ sin @ when
& %,. 8 & & o nA=2dsin 8
. i Bragg’'s Law

Lines (for two-dimensional crystals) or
planes (for three-dimensional crystals)
of reflection

Figure 4 — 1: Geometry for Bragg’s Law (based on a sketch from Reference Website #11)
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For a three-dimensional crystal, the lattice planes which “reflect” will change as the crystal is
rotated, and therefore the diffraction pattern will change.

The von Laue equations can be derived from the Fourier transform relationship between the real
space lattice and the reciprocal space lattice (modeling each as an infinite array of delta
functions), and may be written as:

Ak*a=2hn
Ak*b=2kn
Ak*c=2In

Where Ak is the difference between the incoming and the diffracted wave vectors (kin, kaiy), and
a, b, and c are the lattice vectors described above (for primitive unit cells) or appropriate unit
vectors which will comprise a primitive unit cell, if the unit cell is not intrinsically primitive. As
before, &, k, and / are integers. Solutions of Ak that satisfy all three equations represent
diffraction maximums.

It can be shown that solutions to the above Laue equations are of the form:
Ak=n*2m(ha*+kb*+[c*)

Where a* , b*, and c* are defined to be the normals to the planes formed by the b and c axes, the
a and ¢ axes, and the a and b axes, respectively, and n is an integer.

Defining G to be the reciprocal lattice vector

Gmu=ha*+kb*+/[c*

Which is perpendicular to the (hkl) set of planes in the real lattice, and has a magnitude
| Ghia | = 1/ dpia

|Ak|=n*27|Gpa|=n*2n/dwa

since Ak = ki, — kayr, and | ki | = | kayr| =21/ A

A

Ak

v

kd,'ff

Figure 4 — 2: Geometry of the incoming and diffracted wave vectors, including the scattering angle 6
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|Ak| =2 % | kagr| sSin0 =4 msin 0/ A

4nsinO/A=n*2mn/dw

2dpasinf=n*x

A detailed tutorial on the real vs. reciprocal lattice can be found at this website:

http://www.matter.org.uk/diffraction/Default.htm

The tutorial allows you to experiment by changing the dimensions of the real lattice to observe
the effect on the reciprocal lattice.

5. Analysis of the Contents of the Unit Cell

This section discusses the effects of items ¢ and d in the list at the beginning of Section 3: the
placement of the atoms or molecules with respect to the lattice points and the arrangement of the
electrons with respect to their associated atoms. While the geometry of the crystal lattice will
affect the geometry of the diffraction pattern spacing, or reciprocal lattice, the contents of the
unit cell will affect the relative intensity of the diffraction maxima. Specifically, the observed
diffraction pattern from an actual crystal will show partial or complete “extinctions” compared to
a “ideal” pattern which could be calculated from an infinite real lattice made up of perfect point
scatterers, or delta functions. The variation in intensity of the diffraction pattern maxima
provides the information about the unit cell structure.

Analysis of the unit cell contents begins with consideration of how a single electron scatters an
incoming wave of electromagnetic radiation. From experimental results, two types of scattering
have been identified, Thomson scattering and Compton scattering.

Thomson scattering can be understood from classical electromagnetic wave theory, assuming
that the electron doing the scattering is free to move, and being accelerated by the incoming
radiation, acts as a source of radiation itself. Classical electromagnetic wave theory shows that
the average magnitude of the electric field vector of the scattered waves, compared to the
magnitude of the incident electric field is:

Eeeat/ Ein= [€*/ (4 weorm cH)] * [(1 + cos” 20)/ 2]
Where e is the electron charge, g is the permittivity of free space (a constant equal to 8.854 x 10-
12 F/m), m is the electron mass, 7 is the distance between the electron and where the field is

sampled, c is the speed of light, and 0 is the Bragg or scattering angle.

With this classical analysis, the principal of superposition holds, and so the contribution of each
electron in the unit cell can be added up to find the net effect on the diffraction pattern:
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(Escat)tot = (Escat)A + (Escat)B + ...

Defining the electron scattering factor /. = e / (4 T &y r m ¢*), the superposition principle leads to
the result:

Esat/ Emn=Y feexp{i*p*n}

If, instead of considering discrete electrons, we consider an electron density function, p(r),
continuous over some volume, and sum together the contribution the contribution from
infinitesimal volume elements, we get the integral form of the summation, rather than the
discrete form:

E (ak) =] fop(r) * exp { i (Ak - 1) } V.

unit cel

Since the diffraction pattern is sampled at the reciprocal lattice points, 4kl, it’s useful to define a
discrete “Structure Factor”, Ejy, (Where the intensity of a given point is | Ejy |2):

111
Ew=V[[]pty.z)exp { 2r * i (hx+ky+lz) } dx dy dz
000

To “back out” the contents of the unit cell, the function p(x,y,z) must be determined:

p(x,y,z)=(1/V) hz ; IZ Emgexp { -2n *i (hx+ky+lz) }

This numerical calculation is called Fourier Synthesis, and it can require thousands of
calculations to determine the electron density function for a single point (x, y, and z). A
complete structure analysis for a complicated molecule can require millions or hundreds of
millions of calculations, and wasn’t practical for complicated molecules until high speed
computers were available.

Since the intensity (| Exy |*) of the diffraction pattern is all we can see with our eyes, or record
with a CCD or using photographic methods, the phase information associated with Ej, is lost.
Therefore, it is impossible to directly solve for p(x,y,z) using the observed diffraction pattern and
the last equation given above. This is referred to as the “Phase problem”, and to work around it,
crystallographers generally use approximation and iteration (except for some small, simple
molecules), to determine the unit cell contents.

One final note is that Compton scattering, which uses the Quantum Mechanical concept of
electromagnetic radiation being carried in packets as photons, and a “billiard ball” model of the
collision of the photon with the electron, does not result in discrete diffraction effects, but rather
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overall background scattering. In the collision of the photon with the electron, momentum is
conserved, but the wavelength of the input radiation is changed. There is no well-defined phase
relationships between the radiation being scattered from different electrons in the assembly, and
with no well-defined phase relationship, the superposition principle discussed above for
Thomson scattering, doesn’t hold. Sometimes Compton scattering is referred to as incoherent
scattering, and Thomson scattering as coherent scattering.

6. Convolution

We’ve discussed that the diffraction pattern is the Fourier transform of the real space geometry
of the crystal, and that this is true whether we’re talking about the geometry of the overall crystal
(shape function), the crystal lattice (infinite lattice), or the contents of the unit cell (motif).

f(obstacle) = f(motif) * [f(infinite lattice) x f(shape function)]

(Convolution) @
[ [ [ [ [
[ [ [ [ [
[ [ [ [ [
[ [ [ [ [
[ [ [ [ [
[ [ [ [ [

Figure 6 — 1: Convolution of a single rectangle (motif) with a lattice, results in a lattice of rectangles.
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Fourier transform

-------------------------------------
[T SEET IR TRET SRR TRRY TRIT S THNT RUN THR TRNT SUR TR TN S TINT SUN NS TRRT SHY TORT BRI IR TENT BUNT THRT TRUT SUN TRRY CRNT TRE TRy SEI TR TRt

-------------------------------------

Figure 6 — 2: The Fourier transform operation on a real lattice (top) yields the reciprocal lattice (bottom)

Fourier Transform .

Figure 6 — 3: The Fourier transform of a single rectangle yields the pattern on the right.
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.......

Fourier transform

(Multiply the Fourier transforms of the motif and the lattice)

Figure 6 — 4: The Fourier transform of the lattice of rectangles is shown in the upper right hand corner. It is the
product of the Fourier transform of the rectangle and the Fourier transform of the lattice.

The above figures show pictorially that the Fourier transform of the convolution of the motif
with the lattice is the product of the individual transforms of the motif and the lattice. More
generally:

Diffraction pattern amplitude F(sinf) = T f(motif) x [Tf(infinite lattice) * Tf(shape function)]
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Recall the definition and view an animated example of the convolution theorem by visiting this
website:

http://mathworld.wolfram.com/Convolution.html

The effect on convolution can be seen in the diffraction pattern as an “enveloping” of the
transform of the infinite lattice (idealized with perfect point scatterers) with the transform of the
motif (assumes the transform of the shape function isn’t affecting the result).

See a graphical example at this website:

http://www.mineralogie.uni-wuerzburg.de/crystal/teaching/conv_a.html

Below are some additional pictorial examples, from the “Diffraction and Fourier Transform”
program at the following website:

http://escher.epfl.ch/fft/

Figure 6 — 6: Fourier Transform of a single right triangle, and of a rectangular array of right triangles
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Student exercise #3: Use a laser to view the diffraction patterns from slides B-3 and B-4.
Without reading the legends, can you determine the shape of the motif (or the size, as applicable)
for each of the optical crystals? How can you tell?

7. The Effect of Wavelength - the Ewald Sphere

The Ewald sphere is a geometric construction which shows the relationships between the
wavelength of the incident radiation, A, the diffraction pattern (reciprocal lattice), and the
scattering angle, @. For simplicity, we’ll discuss a two-dimensional representation of the Ewald
sphere (a circle). See Figure 7 - 1 below, which is similar to Figure 4 — 2 in showing the
relationship between the incoming and diffracted wave vectors k;, and kayy, and the scattering

angle, 6.

A

X
——
( // \\ 5;0) )
| 1/ \\ 4,0) )
( I/ \\ )
/ \[C7

( y A A Y \I\’ G) )
( kin (I o 0) )
(- ?4 {0-0) p—

/ z
( NS Y f) o (-1,°0) S A AR

\ N 4k /]

( (-2,0) T
( \\ kdl'.f‘f \ III \'3 G\’ )
\ \\ \‘/ (-4,0) :
. \\ / (-3, 0) .
( \\ l/ )

v

Figure 7 — 1: Two-dimensional representation of the Ewald sphere — a circle.
The Ewald circle is generated using the following steps:
1) Starting at the origin of the reciprocal lattice, a circle (or sphere, in three dimensions) is

drawn with radius equal to the magnitude of the k;, and kg vectors (remember that k;, and kg
have the same magnitude, equal to 2 w / X).
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2) The origin of the circle is determined by the direction of the incoming wave vector, k;,. The
head of the k;, vector is at the origin of the reciprocal lattice, and the tail defines the origin of the
circle.

The significance of the Ewald circle (or sphere) is that diffraction maximums occur where the
lattice points intersect the circle, because the intersection indicates that the Bragg condition is
satisfied.

Note that in Figure 7 — 1, the reciprocal lattice geometry is represented by the long green rods

parallel to the g axis, where the Z axis is the direction of the incoming wave vector. This is
intended to represent the diffraction geometry of the two-dimensional optical crystals that we’ve
been using in this experiment. Recall the statement in Section 2, that the Fourier transform of a
delta function is infinitely broad. The optical crystals can be considered a delta function in the
axis parallel to the incoming wave vector.

While the optical crystal slides are a simplification of “real crystals”, it should be noted that
crystallographers often use thin samples of material for structural analysis, with the result that
reciprocal lattice points are elongated, and diffraction occurs even when the Bragg condition is
not exactly satisfied. See the diagram at the following website for a graphical representation of
this situation:

http://www.microscopy.ethz.ch/ED-Ewald.htm

To get a better sense of the three-dimensional Ewald sphere, run the “Ewald sphere animation™ at
the following website:

http://lcr.epfl.ch/page37304-en.html

The animation shows the reciprocal lattice rotating about the reciprocal lattice origin, while the
incoming wave vector and the Ewald sphere remain stationary. A number of experimental
methods for analyzing crystals involve rotating the crystal and capturing the resulting diffraction
patterns on film (or with a CCD). In the animation you’ll see yellow arrows indicating the
intersections of the Ewald sphere with the reciprocal lattice — these are where the diffraction
maximums would be recorded.

More animations are shown at the following website:

http://www.science.uva.nl/research/cmp/goedkoop/group/docs/fluctuations/scans.html

The animations on this website are interesting because they show different experimental methods
for recording diffraction patterns.

Student exercise #4: Draw the reciprocal lattice geometry in both the X and the y axes, for the
0.12mm x 0.08mm real lattice (the geometry used in several of the optical crystal slides), using
wavelengths equal to the red and green lasers (use an appropriate scale). What is the effect of
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the wavelength on the Ewald sphere (circle) and on the diffraction pattern? (Note: it’s
interesting to use the optical crystals with both the red and the green lasers, to observe the effect
of wavelength more directly.)

8. Symmetry of the Crystal Lattice and the Diffraction
Pattern

Please refer again to Appendix B for a detailed description of the symmetry operations, the 17
space groups, and standard notation for describing each of the 17 space groups. Following are
some of the key concepts related to these points:

(a) There are 6 symmetry operations:

Proper rotation

Reflection

Inversion = rotation + reflection

Screw rotation = rotation + translation
Glide = reflection + translation
Improper rotation = rotation + inversion

(b) The 17 space groups represent all the possible symmetries in two dimensions. As
mentioned earlier, symmetry operations on the unit cell are used to fill space to form a
complete crystal lattice.

(¢) The standard notation for describing the 17 space groups is as follows:

first letter is the lattice type, either a p (primitive cell) or ¢ (centered rectangular).
the next three characters may be either numbers or letters, to indicate the following
symmetries:

m (mirror),

g (glide),

1 (none),

and a digit » to indicate the n-fold rotation (n = 2, 3, 4, 6).

For example, a “p2” notation indicates a primitive cell with 2-fold rotation and no mirrors or
glides, whereas the “p4gm” notation indicates a primitive cell with 4-fold rotation, and mirror
axes oriented 45° to a glide. Similar notation and classification methods are used for three
dimensional crystals.

Use the slides in the binder to view the diffraction pattern of each one of the 17 space groups.
Notice that each one of the 17 space groups has been generated with a “motif” of right triangles
and dots. For reasons of consistency, all of the examples in this section are of the dot motif.
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Figure 8 — 1: Real space patterns and photographs of diffraction patterns (not to scale) for the p1 and the p2gg space
groups.

Notice the symmetry of the diffraction pattern compared to the real space lattice. Also notice the
complete and partial “extinctions” in the diffraction pattern. Crystallographers use this
information to determine the structure of three-dimensional crystals - the diffraction pattern from
an unknown sample can be compared to characteristics of known samples.

Let’s say, for example, you were trying to determine the real space structure associated with the
diffraction pattern shown in Figure 8 — 2.
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Figure 8 — 2: Photograph of the diffraction pattern from an unknown optical crystal
By examining the symmetry of the diffraction pattern, you may be able to determine that the
symmetry of the real space pattern is even, perhaps 2 or 4. You may have noticed from previous
examples that the symmetry of the diffraction pattern has the same, or one degree higher,
symmetry as the real space pattern. The reason for this is shown below.

Another way to write the Structure Factor discussed in Section 5 is:

Fua= Y fiexp 2mi (hj + ky; + Iz)))
J

For some given reciprocal lattice point 4k/, and a point —4, -k, -/ which is centrosymmetrically
related:

Fua= Y fiexp 2mi (hj + ky; + Iz)))
J
Flhk-p= 2fjexp (-2mi (h; + ky; +1z)))

Fu/ = F (-h, -k, -1)
\Fw | = |Fen, -k -1

Since the intensity of each point is equal to |Fj |*, we will observe centrosymmetry of the
diffraction pattern, even if the lattice is not centrosymmetric.
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One way to determine the real space structure of the unknown optical crystal in Figure 8 — 2
would be to use computer simulation to try to match the diffraction pattern shown. The
following website allows you to quickly generate and view the diffraction patterns for the unit
cells and lattices generated from the 17 space groups (using “JFourier2” under Java applets):

http://jcrystal.com/steffenweber

However, an even more powerful tool is the Diffraction and Fourier Transform (DFT) program
at this website:

http://lcr.epfl.ch/page37304-en.html

This program allows you to generate simple patterns using the graphical tools included with the
program, or to load in a pattern developed from any graphics program as long as it has been
saved as a *png, *.gif, or * jpg file type (use the “Advanced” button to open and save files).
Also at the website above is a program “Escher Web Sketch” that allows you to build your own
patterns (“decorate” any of the 17 space groups with the motif of your choosing).

The following figures show the output of the DFT program, together with real space pattern
(used to make the optical crystal slide and as input to the DFT program), and the photograph of
the diffraction pattern from the optical crystal slide.
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Figure 8 — 3: Clockwise from upper left: the real space pattern for the p3 space group, the calculated diffraction
pattern, the calculated diffraction pattern magnified, and the photograph of the p3 diffraction pattern.
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Figure 8 — 4: Clockwise from upper left: the real space pattern for the p6 space group, the calculated diffraction
pattern, the calculated diffraction pattern magnified, and the photograph of the p6 diffraction pattern.

The calculated diffraction patterns shown in the above figures were generated from the
“Magnitude” view of the FT using the DFT program. Particularly in the magnified view of the
calculated diffraction pattern, you can see the close match between it and the photograph of the
diffraction pattern.

Back to the earlier discussion about symmetry of the diffraction pattern, notice that both the p3
and p6 diffraction patterns shown above have 6-fold symmetry. The patterns are distinctly
different however, with respect to the partial and full extinctions of the diffraction maxima.

Student exercise #5: Using the Diffraction and Fourier Transform program, calculate the
diffraction patterns for the p2mm, p2gg, p4mm, and p4gm space groups. Using these results,
identify the space group associated with Figure 8 — 2, and Figure 8 — 5, below.
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Figure 8 — 5: Photograph of the diffraction pattern from another unknown optical crystal
More features of the Diffraction and Fourier Transform Program

The Diffraction and Fourier Transform program calculations can be graphically displayed in a
variety of ways, including Complex, Real Part, Imaginary Part, Magnitude, and Phase options.

Figure 8 — 6: Clockwise from upper left: output of the DFT program for the p6 space group, using the Complex,
Real Part, Imaginary Part, and Phase options. Magnitude is shown in Figure 8 — 4.
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The “Magnitude” option is comparable to what your eye, a CCD, or the camera “sees”

(remember that the diffraction pattern intensity = | E (k) | ?). The other options can be
understood by referring back to the diffraction pattern equation in Section 2:

E(k)=[f(r)*exp{i(k-r) }dV

The “Complex” option is the complete solution to the equation, “Real Part,” “Imaginary Part”
and “Phase” are self-explanatory. Performing the “FFT-1” (inverse Fourier Transform) on each
option is interesting, in particular for the “Magnitude” option, because the program output
graphically shows the “Phase problem” discussed in Section 5.

The Diffraction and Fourier Transform program also allows you to place a mask on either the
real space lattice (simulates the effect of a small, finite crystal) or on the calculated diffraction
pattern (simulates the effects of limited size of the recording device, as an example).

The effect of small crystal size was discussed briefly in Section 3 — for very small crystals, there
will be noticeable subsidiary maxima between the main diffraction maxima.

The effect of placing a mask on the calculated diffraction pattern and performing the inverse
Fourier Transform is to lose resolution on the calculation of the real space geometry. This is an
intuitively obvious result — less available data results in a less precise calculation.
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Figure 8 — 7: Clockwise from upper left — each picture shows the effect of placing successively smaller masks on
the calculated “Complex” diffraction pattern of the DFT program, and performing the inverse Fourier Transform
(for the p6 space group). The original real space pattern is shown in Figure 8 — 4.
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9. Conclusion

Diffraction describes what happens when a wave interacts with an obstacle. The diffraction
pattern which results from this interaction contains information about the structure of the
obstacle - the diffraction pattern amplitude is the Fourier transform of the geometry of the
obstacle.

When the obstacle is a crystal, each component of the crystal geometry can be important for
understanding the diffraction pattern. A crystal is made up of ordered arrays of atoms or
molecules. The geometry of the array, or lattice, determines the geometry of the reciprocal
lattice, while the arrangement of the atoms and molecules (the contents of the unit cell),
determines the enveloping function for the reciprocal lattice. If the crystal is very small, the
finite size of the crystal can also affect the diffraction pattern - there will be noticeable subsidiary
maxima between the main peaks of the diffraction pattern.

The diffraction pattern is affected by the wavelength of the incoming wave. This effect can be
understood by using the Ewald sphere (or circle in two dimensions), a simple geometrical
construction relating the wavelength of the incoming wave with the scattering angle and the
reciprocal lattice.

The symmetry of the crystal can be analyzed by observing the symmetry of the diffraction
pattern (the diffraction pattern has the same, or one degree higher, symmetry as the real space
pattern), and by observing the full or partial extinctions of the diffraction peaks in the diffraction
pattern. Analysis of the full and partial extinctions is beyond the scope of this paper. See the
texts in the References section (for example, Sherman) for more information if desired.

Most of the discussion and experiments in the preceding sections focused on two-dimensional
geometries - in most cases, there is a direct analogy to three dimensions.
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Appendix A—The “B” Numbered Slides
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B-1.4

A gas of small
squares

B-2.1

A gas of triangles

B-2.2

A gas of dots

B-2.3

A gas of rectangles
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Appendix B — Extract from TBD “Two-dimensional patterns,
lattices, and symmetry”

2.1 Approaches to the study of crystal structures

In Chapter 1 we developed an understanding of simple crystal structures by first
considering the ways in which atoms or ions could pack together and then introducing
smaller atoms or ions into the interstices between the larger ones. This is a pragmatic
approach as it not only provides us with an immediate and straightforward understand-
ing of the atomic/ionic arrangements in some simple compounds, but also suggests the
ways in which more complicated compounds can be built up.

However, it is not a systematic and rigorous approach, as all the possibilities of atomic
arrangements in all crystal structures are not explored. The rigorous, and essentially
mathematical, approach is to analyse and classify the geometrical characteristics of
quite general two-dimensional patterns and then to extend the analysis to three dimen-
sions to arrive at a completely general description of all the patterns to which atoms or
molecules or groups of atoms or molecules might conform in the crystalline state.

These two distinct approaches—or strands of crystallographic thought—are apparent
in the literature of the nineteenth and early twentieth centuries. In general, it was the
metallurgists and chemists, such as Tammann” and Pope”, who were the pragmatists,
and the theoreticians and geometers, such as Fedorov" and Schoenflies”, who were the
analysts. It might be thought that the analytical is necessarily superior to the pragmatic
approach because its generality and comprehensiveness provides a much more powerful
starting point for progress to be made in th%discovery and interpretation of the crystal
structures of more and more complex substances. But this is not so. It was, after all, the
simple models of sodium chloride and zinc blende of Pope (such as we also constructed
in Chapter 1) that helped to provide the Braggs™ with the necessary insight into crystal
structures to enable them to make their great advances in the interpretation of X-ray
diffraction photographs. In the same way, 40 years later, the discovery of the structure of
DNA by Watson and Crick was based as much upon structural and chemical knowledge
and intuition, together with model building, as upon formal crystallographic theory.

However, a more general appreciation of the different patterns into which atoms and
molecules may be arranged is essential, because it leads to an understanding of the
important concepts of symmetry, motifs and lattices. The topic need not be pursued
rigorously—in fact it is unwise to do so because we might quickly ‘lose sight of the wood
for the trees!” The essential ideas can be appreciated in two dimensions, the subject of

* Denotes biographical notes available in Appendix 3.
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this chapter. The extension to three dimensions (Chapters 3 and 4) which relates to ‘real
crystal structures’, should then present no conceptual difficulties.

2.2 Two-dimensional patterns and lattices

Consider the pattern of Fig. 2.1(a), which is made up of the letter R repeated indefinitely.
What does R represent? Anything you like—a ‘two-dimensional molecule’, a cluster of
atoms or whatever. Representing the ‘molecule’ as an R, an asymmetric shape, is in effect
representing an asymmetric molecule. We shall discuss the different types or elements
of symmetry in detail in Section 2.3 below, but for the moment our general everyday
knowledge is enough. For example, consider the symmetry of the letters R M S. R is
asymmetrical. M consists of two equal sides, each of which is a reflection or mirror image
of the other, there is a mirror line of symmetry down the centre indicated by the letter m,
thusM1__ . Thereisno mirrorline inthe S, but ifitisrotated 180° abouta point in its centre,
an identical 8 appears; there is a two-fold rotation axis usually called a diad axis at
the centre of the S. This is represented by a little lens-shape # at the axis of rotation: §.

In Fig. 2.1(a) R, the repeating ‘unit of pattern’ is called the motif. These motifs may
be considered to be situated at or near the intersections of an (imaginary) grid. The grid
is called the lattice and the intersections are called lattice points.

Let us now draw this underlying lattice in Fig. 2.1(a). First we have to decide where to
place each lattice point in relation to each motif: anywhere will do—above, below, to
one side, in the ‘middle’ of the motif—the only requirement is that the same position
with respect to the motif is chosen every time. We shall choose a position a little below
the motif, as shown in Fig. 2.1(b). Now there are an infinite number of ways in which the

R R R R .R.R.R.R
R R R R .R.H.R.R

R R R R R .R .R .R
(a) (®)

Fig.2.1. (a) A pattern with the motif R, (b) with the lattice points indicated and (c) the lattice and a unit
cell outlined (Drawn by K. M. Crennell). '

Page 40 of 64



Experiments in Diffraction Using Optical Crystals and Computer Simulation

2.2 Two-dimensional patterns and lattices 43

lattice points may be ‘joined up’ (i.e. an infinite number of ways of drawing a lattice or
grid of lines through lattice points). In practice, a grid is usually chosen which ‘joins up’
adjacent lattice points to give the lattice as shown in Fig. 2.1(c), and a unit cell of the
lattice may also be outlined. Clearly, if we know (1) the size and shape of the unit cell
and (2) the motif which each lattice point represents, including its orientation with
respect to the lattice point, we can draw the whole pattern or build up the whole structure
indefinitely. The unit cell of the lattice and the motif therefore define the whole pattern
or structure. This is very simple: but observe an importance consequence. Each motif
is identical and, for an infinitely extended pattern, the environment (i.e. the spatial
distribution of the surrounding motifs, and their orientation) around each motif is
identical. This provides us with the definition of a lattice (which applies equally in
two and three dimensions): a latrice is an array of points in space in which the
environment of each point is identical. Again it should be stressed that by environment
we mean the spatial distribution and orientation of the surrounding points.

Like all simple definitions (and indeed ideas), this definition of a lattice is often not
fully appreciated; there is, to use a colloquial expression, ‘more to it than meets the eye!”
This is particularly the case when we come to three-dimensional lattices (Chapter 4),
but, for the two-dimensional case, consider the patterns of points in Fig. 2.2 (which
should be thought of as extending infinitely). Of these only (a) and (d) constitute a
lattice; in (b) and (c) the points are certainly in a regular array, but the surroundings of
each point are not all identical.

Figures 2.2(a) and (d) represent two two-dimensional lattice types, named oblique
and rectangular, respectively, in view of the shapes of their unit cells. But what is the
distinction between the oblique and rectangular lattices? Surely the rectangular lattice
is just a special case of the oblique, i.e. with a 90° angle?

(a) (b)

(c) (d)

Fig. 2.2. Patterns of points. Only (a) and (d) constitute lattices.

Page 41 of 64



Experiments in Diffraction Using Optical Crystals and Computer Simulation

44 Two-dimensional patterns, lattices and symmetry

The distinction arises from different symmetries of the two lattices, and requires
us to extend our everyday notions of symmetry and to classify a series of symmetry ele-
ments. This precise knowledge of symmetry can then be applied to both the motif and the
lattice and will show that there are a limited number of patterns with different sym-
metries (only seventeen) and a limited number of two-dimensional lattices (only five).

2.3 Two-dimensional symmetry elements

The clearest way of developing the concept of symmetry is to begin with an asymmet-
rical ‘object’—say the R of Fig. 2.1—then to add successively mirror lines and axes of
symmetry and to see how the R is repeated to form different patterns or groups. The
different patterns or groups of Rs which are produced correspond, of course, to objects
or projections of molecules (i.e. ‘two-dimensional molecules’) with different symmet-
ries which are not possessed by the R alone.

The patterns or groups which arise and which as explained below are of concern in
crystallography are shown in Fig. 2.3. On the left are the patterns of Rs, in the centre are
decorative motifs with the same symmetry, and on the right are projections of molecules.
Figure 2.3(1) shows the R ‘on its own’ and, as an example, the asymmetrical projection
of the CHFCIBr molecule. Figure 3.2(2) shows ‘right-" and ‘left’-handed Rs reflected in
the ‘vertical’ mirror line between them. This pair of Rs has the same mirror symmetry as
the projection of the cis-difluoroethene molecule. Now add another ‘horizontal” mirror
line as in Fig. 2.3(3). A group of four Rs (two right- and two left-handed) is produced.
This group has the same symmetry as the projection of the ethene molecule.

The R may be repeated with a diad (two-fold rotation) axis, as in Fig. 2.3(4). The two
Rs (both right handed) have the same symmetry as the rrans-difluoroethene molecule.
Now look back to the group of Rs in Fig. 2.3(3); notice that they also are related by a diad
(two-fold rotation axis) at the intersection of the mirror lines: the action of reflecting the
Rs across two perpendicular mirror lines ‘automatically’ generates the two-fold sym-
metry as well. This effect, where the action of two symmetry elements generates
another, is quite general as we shall see below.

Mirror lines and diad axes of symmetry are just two of the symmetry elements that
occur in two dimensions. In addition there are three-fold rotation or triad (3) axes
(represented by a little triangle, A), four-fold rotation or tetrad (4) axes (represented by
a little square, W), and six-fold (6) or hexad axes (represented by a little hexagon, @).
Asymmetrical objects are represented as having a one-fold or monad (1) axis of
symmetry (for which there is no little symbol)—which means in effect that one 360°
rotation brings the object into coincidence with itself.

Figure 2.3(5) shows the R related by a triad (three-fold) axis. The projection of the
trifluoroalkylammonia molecule also has this same symmetry. Now add a ‘vertical’
mirror line as in Fig. 2.3(6). Three more left-handed Rs are generated, and at the same
time the Rs are mirror related not just in the vertical mirror line but also in two lines
inclined at 60° as shown; another example of additional symmetry elements (in this case
mirror lines) being automatically generated.

This procedure (of generating groups of Rs which represent motifs with different
symmetries) may be repeated for tetrad (four-fold) axes (Fig. 2.3(7)); plus mirror lines
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(Fig.2.3(8)); forhexad (six-fold) axes (Fig. 2.3(9)); plus mirror lines (Fig. 2.3(10)). Notice
that not only do these axes of symmetry ‘automatically’ generate mirror lines at 90° (for
tetrads) and 60° (for hexads) but also ‘interleaving’ mirror lines at 45° and 30° as well.

(M R 1
AR
F
(2) Far
W —C\h m
L m cis-difluoroethene
AlR H ’
(3) Se=—c” 2mm
'\m H/ c C ~ H
4 'E m ethene
j H F
' FC “H
H trans-difluoroethene
H
R HA | _H
C C
(5) A H” ' SNN7 NF 3
o« |
> C
F~]1~H
H

trifluoralkylammonia
Fig. 2.3. (continued)}
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e ! 3m
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\
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Fig. 2.3. The ten plane point groups showing left to right, the symmetry which arises based on an
asymmetrical object R; examples of motifs; examples of molecules and ions (drawn as projections) and
the point group symbols. (Drawn by K. M. Crennell, 1999.)
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The ten arrangements of Rs (and the corresponding two-dimensional motifs or
projections of molecules) are called the ten two-dimensional crystallographic or
plane point groups, so called because all the symmetry elements—axes (perpendicular
to the page) and mirror lines (in the page)—pass through a point. The ten plane point
groups are labelled with ‘shorthand’ symbols which indicate, as shown in Fig. 2.3, the
symmetry elements present: 1 for a monad (no symmetry), m for one mirror line, mm (or
2mm) for two mirror lines (plus diad), 2 for a diad, 3 for a triad, 3m for a triad plus three
mirror lines, 4 for a tetrad, 4mm for a tetrad plus four mirror lines, 6 for a hexad and 6mm
for a hexad plus six mirror lines (the extra ‘m’ in the symbols referring to the ‘inter-
leaving” mirror lines).

Now, in deriving these ten plane point groups we have ignored groups of Rs with five-
fold (pentad), seven-fold (heptad) etc. axes of symmetry with and without mirror lines.
Such plane point groups are certainly possible and are widely represented in nature—the
pentagonal symmetry of a starfish for example. However, what makes the ten plane
point groups in Fig. 2.3 special or distinctive is that only these combinations of axes and
mirror lines can occur in regular repeating patterns in two dimensions as is explained in
Sections 2.4 and 2.5 below. Hence they are properly called the two-dimensional crystal-
lographic point groups as indicated above. Patterns with pentagonal symmetry are
necessarily non-repeating, non-periodic or ‘incommensurate’ and consequently have
in the past been rather overlooked by crystallographers. However, with the realization
that groups of atoms (or viruses) can form ‘quasi crystals’ with five-fold symmetry
elements (see Section 4.8), the study of non-periodic two-dimensional patterns has
become of increasing interest and importance (see Section 2.8). A simple way at this
stage of ‘seeing the difference’ is to compare, for example, the arrangement of six lattice
points equally spaced around a central lattice point (hexagons) with the arrangement of
five ‘lattice’ points equally spaced around a central point (pentagons). In the former case
the arrangement of points can be put together to form a lattice (a pattern or tiling of
hexagons with ‘no gaps’ and ‘no overlaps’). In the latter case the points cannot be put
together to form a lattice—there are always ‘gaps’ or ‘overlaps’ between the tiling of
pentagons. Try it and see!

2.4 The five plane lattices

Having examined the symmetries which a two-dimensional motif may possess we can
now determine how many two-dimensional or plane lattices there are. We will do this
by building up patterns from the ten motifs in Fig. 2.3 with the important condition that
the symmetry elements possessed by the single motif must also extend throughout the
whole pattern. This condition is best understood by way of a few examples. Consider the
asymmetrical motif R (Fig. 2.3(1)); there are no symmetry elements to be considered
and the R may be repeated in a pattern with an oblique (i.e. the most asymmetrical)
arrangement of lattice points. Now consider the motif which possesses one ‘vertical’
mirror line of symmetry (Fig. 2.3(2)). This mirror symmetry must extend throughout the
whole pattern from motif to motif which means that the lattice must be rectangular.
There are two possible arrangements of lattice points which fulfil this requirement:
a simple rectangular lattice and a centred rectangular lattice as shown in Fig. 2.4(a).
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The oblique p-lattice

p2mm
The rectangular p-lattice

] c2mm
The rectangular c-lattice
pamm
The square p-lattice
pémm

The hexagonal p-lattice
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(b)

Fig. 2.4. (a) Unit cells of the five plane lattices, showing the symmetry elements present (heavy solid
lines indicate mirror lines, dashed lines indicate glide lines) and their plane group symbols (from
Essentials of Crystallography, by D. McKie and C. McKie, Blackwell, 1986). (b) The rectangular
¢ lattice, showing the alternative primitive (rhombic p or diamond p) unit cell.

These rectangular lattices also possess ‘horizontal’ mirror lines of symmetry corres-
ponding to the motif with the two sets of mirror lines as shown in Fig. 2.3(3). Now
consider the motifs with tetrad (four-fold) symmetry (Figs 2.3(7) and (8)). This four-fold
symmetry must extend to the surrounding motifs which means that they must be
arranged in a square pattern giving rise to a square lattice (Fig. 2.4(a)).

Altogether, five two-dimensional or plane lattices may be worked out, as shown in
Fig. 2.4(a). They are described by the shapes of the unit cells which are drawn between
lattice points—oblique p, rectangular p, rectangular ¢ (which is distinguished from
rectangular p by having an additional lattice point in the centre of the cell), square p
and hexagonal p. Notice again that additional symmetry elements are generated ‘in
between’ the lattice points as shown in Fig. 2.4(a) (right). For example, in the square
lattice there is a tetrad at the centre of the cell, diads halfway along the edges and vertical,
horizontal and diagonal mirror lines as well as the tetrads situated at the lattice points.

All two-dimensional patterns must be based upon one of these five plane lattices; no
others are possible. This may seem very surprising—surely other shapes of unit cells are
possible? The answer is ‘yes’, a large number of unit cell shapes are possible, but the
pattern of lattice points which they describe will always be one of the five of Fig. 2.4(a).
For example, the rectangular ¢ lattice may also be described as a rhombic p or diamond
p lattice, depending upon which unit cell is chosen to ‘join up’ the lattice points
(Fig. 2.4(b)). These are just two alternative descriptions of the same arrangement of
lattice points. So the choice of unit cell is arbitrary: any four lattice points which outline
a parallelogram can be joined up to form a unit cell. In practice we take a sensible course
and mostly choose a unit cell that is as small as possible—or ‘primitive’ (symbol p)—
which does not contain other lattice points within it. Sometimes a larger cell is more
useful because the axes joining up the sides are at 90°. Examples are the rhombic or
diamond lattice which is identical to the rectangular centred lattice described above and,
to take an important three-dimensional case, the cubic cell (Fig. 1.6(c)) which is used to
describe the cep structure in preference to the primitive rhombohedral cell (Fig. 1.7(c)).
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AR A|R iR | IR
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A, i A
m m m 9 9 g

(a) (b)

Fig.2.5. Patterns with (a) reflection symmetry and (b) glide-reflection symmetry. The mirror lines (m)
and glide lines (g) are indicated.

Now as there are ten point group symmetries which a motif can possess, it may be
thought that there are therefore only ten different types of two-dimensional patterns,
distributed among the five plane lattices. However, there is a complication: the com-
bination of a point group symmetry with a lattice can give rise to an additional symme-
try element called a glide line. Consider the two patterns in Fig. 2.5, both of which
have a rectangular lattice. In Fig. 2.5(a) the motif has mirror symmetry as in Fig.
2.3(2); it consists of a pair of right- and left-handed Rs. In Fig. 2.5(b) there is still a
reflection—still pairs of right- and left-handed Rs—but one set of Rs has been trans-
lated, or glided half a lattice spacing. This symmetry is called a reflection glide or
simply a glide line of symmetry. Notice that glide lines also arise automatically in the
centre of the unit cell of Fig. 2.5(b) as do mirror lines in Fig. 2.5(a). Glide lines are, of
course, as familiar to us as mirror lines; they represent the pattern of our footprints in
the snow when we walk in a straight line!

The presence of the glide lines also has important consequences regarding the
symmetry of the motif. In Fig. 2.5(a) the motif has mirror symmetry but in Fig. 2.5(b)
it does not: the pair of right- and left-handed Rs is asymmetric. It is the repetition of
the translational symmetry elements—the glide lines—that determines the overall
rectangular symmetry of the pattern. The glide lines which are present in the five
plane lattices are shown (in addition to the axes and mirror lines of symmetry) in
Fig. 2.4(a).

2.5 The seventeen plane groups

Glide lines give seven more two-dimensional patterns, giving seventeen in all—the
seventeen plane groups. On a macroscopic scale the glide symmetry in a crystal would
appear as simple mirror symmetry—the shift between the mirror-related parts of the
motif would only by observable in an electron microscope which was able to resolve
the individual mirror-related parts of the motif, i.e. distances of the order of 0.5-2 A
(50-200 pm).

The seventeen plane groups are shown in Fig. 2.6(a). They are labelled by ‘shorthand’
symbols which indicate the type of lattice (p for primitive, ¢ for centred) and the
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Fig. 2.7. Projection (a) of the structure of CoH2(CHs): (from Centemporary Crystallography.
by M. I. Buerger, McGraw-Hill, 1970), with (b) the motif, lattice and symmetry elements indicated.

symmetry elements present, m for mirror lines, g for glide lines, 4 for tetrads and so on.
The symmetry elements within a unit cell are shown in Fig. 2.6(b). Itis a good exercise in
recognizing the symmetry elements present in the 17 plane groups to lay a sheet of
tracing paper over Fig. 2.6(a), to indicate the positions of the axes, mirror and glide lines
of symmetry in an (arbitrary) unit cell and then to compare your "answers’ with those
shown in Fig. 2.6(b) overleaf.

It is essential to practice recognizing the motifs, symmetry elements and lattice types
in two-dimensional patterns and therefore to find to which of the seventeen plane groups
they belong. Any regular patterned object will do—wallpapers, fabric designs, or the
examples at the end of this chapter. Figure 2.7 indicates the procedure you should
follow. Cover up Fig. 2.7(b) and examine only Fig. 2.7(a); it is a projection of molecules
of CoH>(CHj3),. You should recognize that the molecules or groups of atoms are not
identical in this two-dimensional projection. The motif is a pair of such molecules and
this is the *unit of pattern” that is repeated. Now look for symmetry elements and (using a
piece of tracing paper) indicate the positions of all of these on the pattern. Compare your
pattern of symmetry elements with those shown in Fig. 2.7(b). If you did not obtain
the same result you have not been looking carefully enough! Finally, insert the lattice
points—one for each motif. Anywhere will do, but itis convenient to have them coincide
with a symmetry element, as has been done in Fig. 2.7(b). The lattice is clearly oblique
and the plane group is p2 (see Fig. 2.6).

The motifs of the seventeen patterns in Fig. 2.6 should be identified by circling them
(lightly in pencil in case you make a mistake). You will find that, as a result of the
presence of glide lines of symmetry, there are three plane groups ( pg. p2gg and pdgm) in
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2.7 Symmetry in art and design: counterchange patterns 5

which the motif is asymmetric and one ( p2mg) in which it has only one mirror-line of
symmetry.

Another systematic way of identifying a plane pattern is to follow the ‘flow diagram’
shown in Fig. 2.8. The first step is to identify the highest order of rotation symmetry
present, then to determine the presence or absence of reflection symmetry and so on
through a series of ‘yes’ and ‘no’ answers, finally identifying one of the seventeen plane
patterns whose plane group symbols are indicated ‘in boxes’, corresponding to those
given in Fig. 2.6.

2.6 One-dimensional symmetry: border or frieze patterns

Identifying the number of one-dimensional patterns provides us with a good exercise
in applying our more general knowledge of plane patterns. It is also a useful exercise in
that it tells us about the different types of patterns that can be designed for the borders
of wallpapers, edges of dress fabrics, friezes and cornices in buildings, and so on.

In plane patterns the symmetry operations and symmetry elements are (clearly)
repeated in a plane; in one-dimensional patterns they can only be repeated in or along
a line—i.e. the line or long direction of the border or frieze. This restriction immedi-
ately rules out all rotational symmetry elements with the exception of diads: two-fold
symmetry alone can be repeated in a line: three-, four-, and six-fold symmetry elements
require the repetition of a motif in directions other than the line of the border. For the
same reason glide-reflection lines of symmetry, other than that along the line of the
border, are ruled out. Mirror lines of symmetry are restricted to those along, and
perpendicular to, the line of the border.

These restrictions result in seven one-dimensional groups, shown in Fig. 2.9. It is a
good and satisfying exercise for you to derive these from first principles as outlined
above. It is also useful to compare Fig. 2.9 with Fig. 2.6; the bracketed symbols in
Fig. 2.9 indicate from which plane pattern the one-dimensional pattern may be derived.
Notice that in one case two one-dimensional patterns—these with ‘horizontal’ and
‘vertical’ mirror planes—are derived from one plane pattern ( pm). This is because the
mirror lines in the plane group pm can be oriented either along, or perpendicular to,
the line of the one-dimensional pattern.

Figure 2.19 (see Exercise 2.6) also shows examples of some of the border
patterns. You can practice recognizing such patterns either by overlaying the pattern
with a piece of tracing paper, and indicating the positions of the diads, mirror and
glide lines as described above for plane patterns or by following the flow diagram
(Fig. 2.10).

2.7 Symmetry in art and design: counterchange patterns

We have a rich inheritance of plane and border patterns in printed and woven textiles,
wallpapers, bricks and tiles which have been designed and made by countless craftsmen
and artisans in the past ‘without benefit of crystallography’. The question we may now
ask is: ‘Have all the seventeen plane groups and seven one-dimensional groups been
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utilized in pattern design or are some patterns and some symmetries more evident than
others? If so, is there any relationship between the preponderance or absence of certain
types of symmetry elements in patterns and the civilization or culture which produced

them?’

RR RRRR p111 (p1)

B R R p1al (pg)

e o o o o o o Pl12(p2)

FEERARTETETR
1R | A 'R] A ‘ R l A | pm11(p1) . L P L oy P

pim1 (pm)

R E' RIA pmaz (p2mg)

HiB

[R[A[R[A[R|A] pmm2 pemm)
BluBlullal

Fig.2.9. (left) the seven one-dimensional groups or classes of border or frieze patterns (drawn by K. M.
Crennell, 1999); (solid lines indicate mirror lines, dashed lines indicate glide lines and ¢ symbols
indicate diads); (centre) their symmetry symbols and (bracketed) the plane point groups from which
they are derived; and (righr) examples of Hungarian needlework border patterns (from Symmetry
Through the Eyes of a Chemist by 1. and M. Hargittai, Plenum Press, New York and London 1995).
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Are vertical reflection axes present ?

yeis no
Is a horizontal Is there a horizontal
reflection axis present ? reflection
or a glide reflection ?
yes no yes no
Is 2-fold Is 2-fold
rotation present 7 rotation present ?
yes no yes no
Is a horizontal
reflection axis present ?
T 7
pmm2 pma2 pmi pim plal pi12 pi
(p2mm) (p2mg)  (pm) (pm) (p9) (p2) (p1)

Fig. 2.10. Flow diagram for identifying one of the seven border patterns (from The Geometry of
Regular Repeating Patterns, loc. cit.).

Questions such as these have exercised the minds of archaeologists, anthropologists
and historians of art and design. They are, to be sure, questions more of cultural than
crystallographic significance, but patterns play such a large part in our everyday
experience that a crystallographer can hardly fail to be absorbed by them, just as he
or she is absorbed by the three-dimensional patterns of crystals.

The study of plane and one-dimensional patterns (and indeed three-dimensional
(space) patterns) is complicated by the question of colour—‘real’ colours in the case
of plane and one-dimensional patterns, or colours representing some property, such as
electron spin direction or magnetic moment, in space patterns (Chapter 4). Colour
changes may also be analysed in terms of symmetry elements in which colours are
alternated in a systematic way. Clearly, the greater the number of colours, the greater
the complexity. The simplest cases to consider are two-colour (e.g. black and white)
patterns. Figure 2.11 shows the generation of plane motifs through the operation of what
are called counter-change or colour symmetry elements, which are distinguished from
ordinary (rotation) axes and mirror lines of symmetry by a prime superscript. For

Page 55 of 64



Experiments in Diffraction Using Optical Crystals and Computer Simulation

58 Two-dimensional patterns, lattices and symmetry

m’ (m) 2'(2) 4'(4)
i " "R
(2 gl o - o

oY

2'mm' 2mm) 2m'm' (2mm) 4m'm'(4mm) 4'mm'(4mm)

6m'm' (6mm)

Fig. 2.11. The eleven counterchange (black/white) point groups and (bracketed) the point group
symbols for the plane point groups to which they correspond (see Fig. 2.3). The counterchange
symmetry elements are denoted by prime superscripts. (Drawn by K. M. Crennell, 1999.)

example, the operation of a 2’ axis is a twice repeated rotation of an asymmetric object
by 180° plus a colour change at each rotation; the operation of an m’ mirror line is a
reflection plus colour change. Altogether there are eleven counterchange point groups
(Fig. 2.11) compared with the ten plane point groups (Fig. 2.3). Note that there are no
counterchange point groups corresponding to the plane point groups with only odd-
numbered axes of symmetry (the monad and the triad), but that there are in each case
two possible counterchange point groups corresponding to the plane point groups with
symmetry 2mm, 4mm and Gmm.

The derivation of the counterchange one- and two-dimensional patterns also involves
the operation of a g’ glide line which involves a reflection plus a translation of half
a lattice spacing plus a colour change and gives (to extend our footprint analogy) a
sequence of black/white (i.e. right/left footprints).

Accounting for two-colour symmetry gives rise to a total of forty-six (rather than
seventeen) plane patterns and seventeen (rather than seven) one-dimensional patterns.
Figure 2.12 shows an example of plane group pattern p2gg (No. 8—see Fig. 2.6(a), (b))
and the two possible counterchange patterns (symbols p2'gg’ and p2g'g') which are
based upon it.
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Fig.2.12. (a) Plane group p2gg and (b) and (c) the two counterchange plane groups p2'gg’ and p2g’g’
respectively which are based upon it. (Drawn by K. M. Crennell, 1999.)

Probably the most influential and pioneering study of patterns was The Grammar of
Ornament by Owen Jones, first published in 1856!. Owen Jones attempted to categorize
both plane and border patterns in terms of the different cultures that produced them, and
although the symmetry aspects of patterns are touched on in the most fragmentary way,
there is no doubt that the superb illustrations and encyclopaedic character of the book
provided later writers with material which could be classified and analysed in crystal-
lographic terms. Perhaps the best known of these was M. C. Escher (1898-1971) who
drew inspiration for his drawings of tessellated figures from visits to the Alhambra in
the 1930s, and also presumably from Owen Jones’ chapter on ‘Moresque Ornament’ in
which he describes the Alhambra as ‘the very summit of Moorish art, as the Parthenon
is of Greek art’. Escher’s patterns encompass all the seventeen plane groups, eleven
of which are represented in the Alhambra.

More recent work has identified clear preponderances of certain plane symmetry
groups, and the absences of others®. For example, nearly 50% of traditional Javanese
batik (wax-resist textile) patterns belong to plane group pdmm (Fig. 2.6), others, such as
p3. p3ml, p31m and p6 are wholly absent. In Jacquard-woven French silks of the last
decade of the nineteenth century, nearly 80% of the patterns belong to plane group pg. In
Japanese textile designs of the Edo period all plane groups are represented, with a
marked preponderance for groups p2mm and ¢2mm. What these differences mean, or tell
us about the cultures which gave rise to them, is, as the saying goes, ‘another question’.

2.8 Non-periodic patterns and tilings

Johannes Kepler was the first to show that pentagonal symmetry would give rise to a
pattern which was non-repeating. Figure 2.13 is an illustration from perhaps his greatest
work Harmonices mundi (1619) which shows in the figures captioned ‘Aa’ and ‘z’ a
pattern or tiling of pentagons, pentagonal stars and 10 and 16-sided figures which radiate

' Owen Jones. The Grammar of Ornament, Day & Sons Ltd., London, reprinted by Studio Editions, London
(1986).

2M. A. Hann. Symmetry of Regular Repeating Patterns: Case studies from various cultural settings. Journal
of the Textile Institute (1992), Vol. 83, pp. 579-580.
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Fig. 2.13. Non-periodic tiling patterns 'z’ and ‘Aa’ (from Harmonices Mundi by Johannes Kepler,
1619, reproduced from the copy in the Brotherton Library, University of Leeds, by courtesy of the
Librarian).
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out in pentagonal symmetry from a central point. Griinbaum and Shephard® have shown
how the tiling ‘Aa’ can be extended indefinitely giving long-range orientational order
but the pattern does not repeat and cannot be identified with any of the seventeen plane
groups (Fig. 2.6). A. L. Mackay* has shown how a regular, but non-periodic pattern, can
be built up from regular pentagons in a plane with the triangular gaps covered by pieces
cut from pentagons, which he describes with the title (echoing Kepler) De nive quin-
quangula—on the pentagonal snowflake.

These are but two examples of non-periodic or ‘incommensurate’ tilings, the math-
ematical basis of which was largely developed by Roger Penrose and are generally
named after him. Figure 2.14 shows how a Penrose Tiling may be constructed by linking
together edge-to-edge ‘wide’ and ‘narrow’ rhombs or diamond-shaped tiles of equal
edge lengths. The angles between the edges of the tiles (as shown in Fig. 2.14(a)) are not
arbitrary but arise from pentagonal symmetry as shown in Fig. 2.14(b) (where the tiles
are shown shaded in relation to a pentagon); nor are they linked together in an arbitrary
fashion but according to local ‘matching rules’, shown in Fig. 2.14(a) by little triangular
‘pegs’ and ‘sockets’ along the tile edges. These are omitted in the resultant tiling
(Fig. 2.14(c)), partly for clarity and partly because their work in constructing the pattern
is done. (An alternative of showing how the tiles must be fitted together is to colour or
shade them in three ways and then to match the colours, like the pegs and sockets, along
the tile edges.) The tiling can be viewed as a linkage of little cubes where we see three
cube faces; the ‘front” and ‘top’ faces (represented by the ‘wide’ diamonds) and ‘side’
face (represented by the ‘narrow’ diamond)).

The mathematical analysis of non-repeating patterns is rather difficult (especially in
three-dimensions—see Section 4.8), but we can perhaps understand their essential
‘incommensurate’ properties by way of a one-dimensional analogy or example. Con-
sider a pattern made up of a row of arrows and a row of stars extending right and left from
an origin O. If the spacings of the arrows and stars are in a ratio of whole numbers then,
depending on the values of these numbers, the pattern will repeat. Figure 2.15(a) shows a
simple case where the ratio of spacings is 3/2 and the pattern repeats (i.e. the arrows and
stars coincide) every third arrow or second star. If, however, the spacings of the arrows
and stars cannot be expressed as a ratio of whole numbers, in other words if the ratio is an
irrational number, then the pattern will never repeat—the arrows and stars will never
come into coincidence, Figure 2.15(b) shows an example where the ratio of spacings is
V2/1 = 1.414213 ... an irrational number, like 7, where there is ‘no end’ to the number
of decimal places and no cyclic repetition of the decimal numbers.®

*B. Grunbaum and G. C. Shephard. Tilings and Patterns: An Introduction. W. H. Freeman, New York, 1989.
‘AL Mackay. De nive quinguangula. Physics Bulletin 1976, p. 495.

The discovery that some numbers are irrational is one of the triumphs of Greek mathematics. The proof
that /2 is irrational, which is generally attributed to Pythagoras, may be expressed as follows. Suppose that
V2 can bhe expressed as a/b where a and b are whole numbers which have no common factor (if they had, we
could simply remove it). Hence v/2b = a and squaring 2b*> = a*. Now 25° is an even number, hence a? is
also an even number and, since the square of an even number is even, a is an even number. Now an even number
can be expressed as 2 x (any number), i.e. a = 2¢. Squaring again @ = 4¢> = 2b%, hence 2¢* = b* and, for
the same reason as before, since 2¢? is an even number then b is an even number. So, both a and b are even
and have a common factor 2 which contradicts our initial hypothesis which therefore must be false.
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Fig. 2.14. (a) The two types (‘wide’ and ‘narrow’) tiles for the construction of a Penrose tiling. The
triangular ‘pegs’ and *sockets’ along the tile edges indicate how they should be linked together edge-to-
edge. (b) The geometry of the tiles in relation to a pentagon. The ratio OL/s (wide tile) = s/OS (narrow
tile) = (/S — 1)/2 = 1.618 ... (c) shows the resultant tiling (pegs and sockets omitted for clarity)
(reproduced by courtesy of Prof. Sir Roger Penrose).
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Yy Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y ¥ Y VY Y ¥
* k k k * K K K K K £ % x *x * x x (0
Fig. 2.15. One-dimensional examples of (a) a periodic pattern and (b) a non-periodic pattern. In
(a) the pattern repeats every third arrow and second star, in (b) the ratio of the spacings is V2 and the
pattern never repeats.

In Penrose five-fold or pentagonal tiling it turns out (Fig. 2.14(b)) that the ratio of
the diagonal OL to the edge length s (for the wide tile) and the ratio of the edge length s to
the diagonal OS (for the narrow tile) are also both equal to an irrational number
(V5 + 1)/2 = 1.618034 . . . called the Golden Mean or Golden Ratio. The Golden Ratio
also applies to a rectangle whose sides are in the ratio (v/5 + 1)/2: 1; if a square is cut off
such a rectangle, then the rectangle which remains also has sides which are in this ratio,
ie. (V5 + 12 —1:1=1:(/5+ 1)/2. The Golden Ratio also occurs as the conver-
gence of the ratio of successive terms in the so-called Fibonacci series of numbers where
each term is the sum of the preceding two. Any number can be used to ‘start off” a
Fibonacci series,e.g. 1,1,2,3,5,8,13,21,34...0r3,3,6,9,15,24,39,63.... Notonly
is the Golden Ratio a subject of mathematical interest, but it is also of relevance in
architectural proportion and spiral growth in animals and plants (e.g. the spirals traced
out in the head of a sunflower). However, this is a subject which we must regretfully now
leave,

Exercises

2.1 Lay tracing paper over the plane patterns in Fig. 2.6. Outline a unit cell in each case and
indicate the positions of all the symmetry elements within the unit cell. Notice in particular
the differences in the distribution of the triad axes and mirror lines in the plane groups p31m
and p3ml.

2.2 Figure 2.16 is a design by M. C. Escher. Using a tracing paper overlay, indicate the positions
of all the symmetry elements. With the help of the flow diagram (Fig. 2.8), determine the
plane lattice type.

2.3 Figure 2.17 is a projection of the structure of FeS; (shaded atoms Fe, unshaded atoms S).
Using a tracing paper overlay, indicate the positions of the symmetry elements, outline a unit
cell and, with the help of the flow diagram in Fig. 2.8, determine the plane pattern type.

2.4 Figure 2.18 is a design by M. C. Escher. Can you see that the two sets of men are related by
glide lines of symmetry? Draw in the positions of these glide lines, and determine the plane
lattice type.

2.5 Determine (with reference to Fig. 2.11) the counterchange (black—white) point group
symmetry of a chessboard.

2.6 Figure 2.19 shows examples of border or frieze patterns from The Grammar of Ornament by
Owen Jones. Using a tracing paper overlay, indicate the positions of the symmetry elements
and, with the help of the flow diagram (Fig. 2.10), determine the one-dimensional lattice

types.
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2.7 Figure 2.20(a) is a ‘wood block floor’ or *herringbone’ pattern with plane group symmetry
p2ge. Using a tracing-paper overlay (and with the help of Fig. 2.6(b) and the flow chart, Fig.
2.8), locate the positions of the diad axes and glide lines. Now place your tracing paper over
the counterchange patterns (Fig. 2.20(b)) and determine which of the symmetry elements
become counterchange (2' or g') symmetry elements. To which of the counterchange
patterns shown in Fig. 2.12 does this pattern belong?

Fig. 2.16. A plane pattern (from Synumetry Aspects of M. C. Escher’s Periodic Drawings, 2nd edn, by
C. H. MacGillavry. Published for the International Union of Crystallography by Bohn, Scheltema and
Holkema, Utrecht, 1976).
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Fig. 2.17. A projection of the structure of marcasite, FeS; (from Contemporary Crysiallography

Fig. 2.18. A plane pattern (from C. H. MacGillavry, loc. cit.).
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Fig. 2.19.  Examples of border or frieze patterns (from The Grammar of Ornament by Owen Jones,
Day & Son, London 1856, reprinted by Studio Editions, London, 1986). a, b, Greek; ¢, d, Arabian:
e, Moresque; f, Celtic; g, h, Chinese; i, Mexican.

(a) (b)

Fig.2.20. “wood block floor” or ‘herringbone brickwork’ patterns (a) with all blocks the same colour,
and (b) with alternating black and white blocks.
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