
__________________________________________________________________ 
 
 

Experiments in Diffraction Using Optical Crystals and Computer Simulation 
 

__________________________________________________________________ 
 

  

  

  
 

Rebecca Adams 
Evening Physics Masters Project  
Advisor: Dr. Larry Sorensen 
University of Washington 
June 7, 2007 

 

 



Experiments in Diffraction Using Optical Crystals and Computer Simulation 
__________________________________________________________________ 

 

______________________________________________________________________________ 
 

Synopsis 
 

The goal of this project was to develop a laboratory experiment on diffraction which integrated 

the following elements: 

(a) existing and newly developed “optical crystals”  

(b) graphics, tutorials, and simulations available on the web 

(c) brief overview of some of the key concepts of diffraction and crystal structure, to 

provide context for the “hands-on” work with the optical crystals and computer 

simulations. 

Most of the material is related to two-dimensional geometry and analysis, although some 

references are made to three-dimensional crystal geometry, where it’s thought that these 

references would be helpful to allow the students to correlate the analytical or experimental 

results with real crystals and crystallographic techniques. 

The intent of including the “overview” material is to re-familiarize students, who have had at 

least some background in optical physics and materials, with the nomenclature and mathematics 

relevant to the diffraction experiments.  The information is presented assuming only general 

background or limited recall of these topics.  It is not possible to provide a comprehensive 

treatment of all the necessary topics in a short paper, but references are provided for students 

who want more background. 

The new optical crystal slides developed for this project are described in Appendix A.  The 

patterns on these slides are designed to quickly demonstrate important concepts, by showing the 

effect of changing one feature at a time.  For example, one slide which has four patterns of atoms 

of slightly different sizes, while the shape of the atom and the lattice geometry is the same.  

Another example is a slide which has four patterns of atoms of different shapes, while the size of 

the atoms is approximately the same, and again the lattice geometry is unchanged.  See Figure S 

– 1 for the real space and diffraction pattern photographs from the slide with atoms of different 

shapes. 
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B-4.2 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-4.3 
 
Triangles, 0.02 mm 
in height, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-4.4 
 
Rectangles, 0.02 mm 
x 0.04 mm, in a 
rectangular array, 
0.08 mm x 0.12 mm 

 
Figure S – 1:  Example of one of the new optical crystal slides developed for this project 

 

The computer simulations provide even more flexibility than the optical crystals for the student 

to quickly investigate the effects of changing size or shape of the motif, or the lattice geometry, 

and other parameters.  Figure S – 2 shows an example of how the computer simulation output is 

used to help demonstrate the relationship between the Fourier transforms of the motif and the 

lattice, and the “net” Fourier transform of the convolution of the motif and lattice. 
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 *                        

(Convolution of the motif and the lattice results in a crystal structure) 

            

(The Fourier transforms of the motif and the lattice are multiplied to obtain the Fourier transform of the crystal 
structure) 

 

               (Fourier transform)  

Figure S – 2:  Example of how the computer simulation output is used to demonstrate concepts 
(from Section 6 “Convolution”) 
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One of the important new features of this project was to integrate the use of the computer 

simulations with the use of the optical crystal slides.  This was accomplished by using the same 

real space patterns for both the optical crystal slides and as input to the computer simulation - see 

Figure S – 3 as an example.  Showing direct correlation between the observed results from the 

optical crystal slides and the calculated results from the computer simulation (and allowing the 

students to demonstrate this for themselves), provides the students both better understanding and 

confidence in the meaning of each. 

 

 

 
Figure S – 3:  Example of how the computer simulation output and the optical crystal slides are 

integrated (from Section 8 “Symmetry of the Crystal Lattice and the Diffraction Pattern”) 
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Overview 
 

This project was to develop a laboratory experiment on diffraction.  My goal in developing this 
project was to integrate some very useful and interesting interactive material available on the 
web, with some new slides (two-dimensional “optical crystals”) developed by Robert Bachilla, 
Dr. Larry Sorensen, and myself over the past several months.   
 
Robert and I started meeting with Dr. Sorensen in the fall of 2005, with the original goal of 
replacing the 1973 “optical crystals” that were being used in the Physics 575 laboratory class.  
The idea was not just to replace them, but also to expand the patterns, to be able to show 
additional concepts and to thereby allow the students to gain better and broader understanding of 
diffraction.  In order to strategize what to show, we began researching literature and material on 
the web.  The interactive programs on the web were so helpful, easy to use and yet powerful, that 
we began discussing how to integrate the web material with the “hands-on” laboratory work with 
the optical crystals. 
 
Replacing the optical crystals turned out to be far more difficult than we had originally 
envisioned.  The popularity of digital photography has resulted in decreased availability of high 
resolution “analog” photography materials.  Robert Bachilla conducted extensive research into 
digital methods, but the dynamic range currently available via digital methods is still not 
sufficient to produce optical crystals usable with lasers.  He was successful in finding a high 
resolution black and white film for generating slides, and his investigation and production was 
the subject of his Master’s thesis last Fall.  Several of his photographs are incorporated into this 
paper, and all of his slides will hopefully be used as part of the laboratory lesson plan. 
 
At Dr. Sorensen’s suggestion, I have also investigated commercial microfiche as a way to 
generate the optical crystals.  While fewer and fewer options are commercially available for 
microfiche (again, due to the popularity of digital mediums for storage), this process was shown 
to be successful for generating optical crystals. 
 
While Robert was photographing his patterns, he kindly photographed the patterns I had 
generated.  I had developed a small number of patterns designed to quickly show some key 
concepts in diffraction – the effect of the atom and the lattice size and shape, and the effects of 
imperfections due to thermal effects or crystal “stacking errors”.  Robert was wonderful to work 
with throughout this project, and demonstrated skill and persistence in researching methods and 
producing several beautiful and interesting new sets of optical crystals. 
 
I owe both Robert and Dr. Sorensen huge thanks for all of their help and patience as we worked 
together to generate materials for an updated 2-D Diffraction laboratory lesson.  Throughout my 
Master’s studies in the Application of Physics, I have been particularly fascinated with light, 
optics and diffraction, I think because the physics describing light is elegantly simple in theory 
and yet endlessly complex in real-life applications.   
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1. Introduction 

The purpose of this experiment is to gain a better understanding of the physics of diffraction by 
using optical crystals (two-dimensional patterns on slides), and computer simulations.  Optical 
crystals allow you to use optical wavelengths to investigate the same physics pioneered by von 
Laue, W. H. Bragg and W. L. Bragg, and Davisson and Thomson, in their Nobel prizewinning 
experiments and analysis.  There have been many Nobel Prizes awarded for discoveries related 
to diffraction, including: 

Von Laue, Nobel prize 1914, for his discovery of the diffraction of X-rays by crystals 

W. H. Bragg and W. L. Bragg, Nobel prize 1915, for their analysis of crystal structure by 
means of X-rays) 

Davisson and Thomson, Nobel prize 1937, for their experimental discovery of the 
diffraction of electrons by crystals 

After briefly reviewing some of the basic physics of diffraction and of crystal geometry, we’ll 
look at how the different structural elements of a crystal affect the diffraction pattern.  
Throughout the experiment, we’ll use both the optical crystal slides and computer simulation 
programs to illustrate important concepts.  These tools are brought together to directly compare 
the results of each in the section on dealing with symmetry.   
 
Figure 1 - 1 below shows the arrangement used for producing the optical crystal slides.  The 
optical crystal slides are intended to be used with lasers (although white light could be used; in 
addition, the slides can also be put under a microscope or into a projector to get a better look at 
the patterns).  The slides show diffraction patterns similar to those which might be seen with X-
rays or electron diffraction through real crystalline materials, but are a lot more practical to use 
in the lab. 
 

l

He-Ne laser slide 

observation screen 

diffraction pattern 

digital camera 

Figure 1 – 1:  Arrangement for making the “optical crystal” slides (courtesy R. Bachilla) 
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2. Review of the Physics of Diffraction 
 
Diffraction describes what happens when a wave interacts with an obstacle.  Later on, we’ll see 
that the mathematical description of the interaction can be extremely complex, but a simple, one-
dimensional example is straightforward to describe mathematically and useful to review. 
 
Recall that a general solution to the wave equation is  
 
E (r, t) = E0  *  exp { i (k · r-ωt) } 

 
or in one dimension: 
 
E (x, t) = E0  * exp { i (kx-ωt) } 
 
where E0  is the maximum amplitude of the wave, k = the wave vector, which has a magnitude =  
2π / λ and direction associated with the direction of movement of the wavefront, and ω  is the 
angular velocity = 2π * frequency (in Hz) for the wave.  λ is the wavelength of the incoming 
wave. 
 
One useful way to visualize the interaction is by using Huygens construction, where a plane 
wave is treated as the envelope of the little spherical “wavelets” generated by each point on the 
wave front.   
 

 

 
 

Figure 2 - 1:  Diffraction through a single slit, using Huygens’ construction (from Reference Website #9) 
 
When the plane wave encounters a slit (of a size comparable to the wavelength of the plane 
wave), the spherical wavelets will form an interference pattern on the opposite side of the slit 
which will depend on the wavelength of the incoming wave, and the size of the slit.  If, instead of 
a point, we visualize that the “wavelet” is generated by an infinitesimal volume element, dV, 
then the effect of the infinitesimal volume element on the wave movement is a function of the 
geometry at the volume element f (r) * dV.  For the example of a single slit (using the 1-D form 
of the equation), f (x) = 1 for the width of the slit, and f (x) = 0 otherwise.  The wave diffracted 
from an infinitesimal volume element dV is equal to f (r) * exp { i (k · r-ωt) } dV . 
Every infinitesimal volume element inside the slit make a contribution to the diffraction pattern 
on the other side of the slit, so that: 
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Diffracted electric field =  E (k) = ∑ f (r1) * exp { i (k · r1-ωt) } dV1 + f (r2) * exp { i (k 
· r2-ωt) } dV2 + …. 
 
or expressing the summation as an integral: 
 
E (k) =  ∫ f (r) * exp { i (k · r -ωt) } dV 
 
Since the integration is carried out for the variable r, the factor of exp { i (-ωt) } 

may be taken 
out of the integral.  As a practical matter, diffraction experiments involve measurements of the 
intensity of diffracted beams (to determine the structure of molecules and crystal structure, 
generally, X-rays, but for this experiment, light waves), where the period of measurement is 
many orders of magnitude larger than the period of the waves.  This means that the measurement 
ends up being the time average of the intensity of the diffracted waves, and the factor  
exp { i (-ωt) } 

may be dropped from the equation without losing information (it also makes the 
equations easier to write).  This leaves: 
 
E (k) =  ∫ f (r) * exp { i (k · r) } dV 
 
Also note that the diffraction pattern intensity = | E (k) | 2 =  | ∫ f (r) * exp { i (k · r) } dV | 2
 
What this means is that the diffraction pattern is the Fourier transform of the geometry of the 
obstacle(s) doing the diffracting.  This is true for one, two, or three dimensions, and for different 
geometric arrangements, e.g. the electron distribution in an atom in a crystal lattice, or the 
arrangement of the atoms with respect to the crystal lattice, or the geometry of crystal lattice 
pattern itself. 
 
Returning to the one dimensional example of a single slit, we use f (x) instead of f (r), and as 
noted above, f (x) = 1 inside the slit and f (x) = 0 elsewhere.   
 

x

z

k
k sinθ 

θ

kx = k sinθ 
 

 
Figure 2 - 2:  Geometry of the wave vector 
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With the geometry as shown in Figure 1 - 2, k * r = kx * x = k sinθ * x, and the resulting 
diffraction pattern is given by: 
 
E (k) =  ∫ f (x) * exp { i*k*sin θ*x } dx. 
 
The integral should be evaluated from -∞ to ∞, but in the case of a single slit, f (x) is non-zero 
only for the width of the slit, 2 * X0.  Since f (x) = 1 between –X0 and X0, the equation becomes: 
 
            x = X0

E (k) =  ∫ exp { i*k*sin θ*x } dx. 
           x = -X0
 
In one dimension, it simplifies the integral to show the diffraction function, normally shown as  
E (k),  as E (sin θ).  The magnitude of k is unchanged by diffraction, since the wavelength is 
unchanged, and the direction is dependent on θ or sin θ: 
 
            x = X0

E (sin θ) =  ∫ exp { i*k*sin θ*x } dx. 
           x = -X0
 
Using integral tables, this reduces to: 
             
E (sin θ) =  2 * X0 * (sin α / α ) where α = k * X0 * sin θ. 
 
The sin α / α function is also called the sinc α function, and has the form shown below: 
 

 
 

Figure 2 – 3:  Shape of the sinc function 
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As noted above, the intensity that is measured for a diffraction pattern is I (k)  = | E (k) | 2  
(or | E (sin θ) | 2), so a graph of intensity looks like this: 
 

 
 

Figure 2 – 4:  Graph and photograph showing the diffraction pattern from a single slit (from Reference Website #1) 
 
Above is a photograph of the diffraction from a single slit, to compare with the intensity plot. 
 
From previous experiments or classes, you probably remember that it doesn’t matter whether you 
use a positive or negative object (e.g. a pinhole or a black dot) with a light source.  This is called 
“Babbinet’s Theorem.”  Whether the pattern is opaque on a translucent background, or 
translucent on a black (opaque) background, the diffraction patterns end up appearing the same, 
except at the origin in precisely the forward direction.   Most of the examples we’ll use in the 
following sections are opaque dots or other representations of “atoms” instead of slits or 
pinholes, but situation is exactly analogous to what we’ve already described for a single slit. 
 
For a simple two-dimensional example, see the discussion and the graphics illustrating the 
intensity of the diffraction pattern for a single atom, at the website: 
 
http://www.mineralogie.uni-wuerzburg.de/crystal/teaching/basic_a.html
 
Notice that this website has links to a variety of interactive tools important for understanding 
diffraction.  We’ll refer to it again. 
 
For more good examples, take a look at the program “Diffraction and Fourier Transform”, which 
can be found at the following website: 
 
http://lcr.epfl.ch/page37304-en.html
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Student exercise #1: Try the “Diffraction and Fourier Transform” program with a single dot of 
size = 10, then size = 70.  Notice the inverse relationship of size between the dot and the radius 
of the first minimum of the diffraction pattern.  You can also select a rectangular shape, or draw 
an arbitrary shape and see what the Fourier transform is for that shape.  
 
To further demonstrate the effect of the size and shape of an “atom”, use one of the “2D gas” 
slides.  The size and shape of the diffraction pattern doesn’t change if one or many randomly 
placed “atoms” are on a slide (assuming the size and shape of the “atom” doesn’t change), but 
the intensity of the pattern is increased if more random “atoms” are used, making it easier to see 
the patterns in the lab.  Notice how the diffraction pattern varies depending on the shape of the 
“atom.”   Also, use the slides to observe the reciprocal effect of different size “atoms” on the 
diffraction patterns. 
 
 

 
 

Figure 2 – 5:  Diffraction pattern produced from a “gas” of large squares 
 

 

 
 

Figure 2 – 6:  Diffraction pattern produced from a “gas” of small squares 
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Figure 2 – 7:  Diffraction pattern produced from a “gas” of large diamonds 
 

 
 

Figure 2 – 8:  Diffraction pattern produced from a “gas” of dots 
 

 
 

Figure 2 – 9:  Diffraction pattern produced from a “gas” of rectangles 
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Figure 2 – 10:  Diffraction pattern produced from a “gas” of crosses (X’s) 
 
Some interesting notes related to the diffraction pattern, and the significance of the 
Fourier transform. 
 
(A). the inverse of a Fourier transform (denoted FT -1 below) of a function, is the function itself.   
 
E (k) = FT f (x) 
f (x) = FT -1 E (k) 
 
The example most people are familiar with is the use of the Fourier transform to decompose a 
periodic waveform, shown in the time domain, into its components in the frequency domain. 
 

 
 

Figure 2 – 11: Fourier composition of a triangle wave (from Reference Website #13) 
 
If you take the inverse Fourier transform of the function in the frequency domain, you will 
“recompose” the original waveform in the time domain. 
 
(B). The position vector r and the wave vector k (where |k| = 2π / λ) are a Fourier transform pair, 
or conjugates, similar to time t and frequency ω.   Note that r and k are a spatial Fourier 
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transform pair, while t and ω are a temporal Fourier transform pair.  An inverse relationship 
exists between the “width” of each of the variables of the pair.  The bigger the slit, for example, 
the smaller the diffraction pattern, and vice versa.  In the limit of the Dirac delta function 
(defined only at one point) representing a slit, the Fourier transform is infinitely broad.  The 
Heisenberg uncertainty principle applies to the measurement (or even the definition) of position 
and momentum (remember that λ = h / p where h is Planck’s constant, and p is momentum - this 
equation is true for both photons and massive particles such as electron of the particles being 
diffracted): 
 
Δx * Δp ≥ ħ / 2. 
 
The inverse, or reciprocal relationship between real space, represented by x in one dimension or 
r in three dimensions, and “k space” or “momentum space,” is something we’ll observe over and 
over again as we study diffraction in more detail. 
 
Student exercise #2: Explain in your own words why the diffracted intensity is the Fourier 
transform of the real structure for an “atom”.  
 

3. Crystal Geometry 
 
A crystal is made up of atoms or molecules in a regular, periodic arrangement.  As mentioned 
above, the diffraction pattern is given by the Fourier transform of: 
 

a. the size and shape of the macroscopic crystal. 
b. the geometry of the crystal lattice. 
c. the arrangement of the atoms or molecules related to the “unit cell” of the crystal 

lattice. 
d. the arrangement of the electrons in the atoms. 

 
Although the diffraction pattern contains information about item a, it is rarely of interest, since 
other means exist for measuring macroscopic crystal size and shape.  However, if the 
macroscopic crystal is small (or perhaps some kind of masking is used), then there is an effect on 
the diffraction pattern.  The effect is the inverse of the “crystal building” exercise that you may 
have reviewed at this website: 
 
http://www.mineralogie.uni-wuerzburg.de/crystal/teaching/basic_a.html
 
Or, you can generate a lattice and add a mask in real space using the “Diffraction and Fourier 
Transform” program at the following link: 
 
http://lcr.epfl.ch/page37304-en.html
 
Both sites will let you see the effects of small crystal size or masking.   
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Of more practical interest to crystallographers are the effects of b, c, and d.  In order to discuss 
these effects, we will first review crystal structure and nomenclature. 
 
The crystal structure can be thought of as the combination of the crystal lattice (conceptually, a 
regular array of imaginary, infinitely small points) and a motif (conceptually, the unit or structure 
that is regularly repeated in space).  Figure 2 – 1 shows three different crystal structures 
generated from the same rectangular lattice, but with different “motifs” (which could represent 
different types of atoms or molecules). 
 

 
 
Figure 3 – 1: Rectangular lattice with different motifs. Crystal structure = lattice * motif (from Sherwood, pg. 60) 
 
 
Crystal Lattice 
 
One requirement of the crystal lattice structure is that it “fill space”, that is, through whatever 
appropriate symmetry functions, all space can be filled with the lattice pattern with no gaps.  For 
example, pentagons can’t make up a plane lattice pattern, because there’s no way to fill space 
with pentagons without any gaps.  Appendix B is an extract from Reference 2 (Optics, Hecht and 
Zajac) which has an excellent discussion of two-dimensional patterns, lattices, and symmetry.   
 
Some of the key concepts from Appendix B include: 
 

(a) You can choose an arbitrary point in the lattice and draw two lines to adjacent points to 
define the fundamental lattice vectors, a and b (in two-dimensions; the lattice vectors are 
a, b, and c in three dimensions).   The angle between the lattice vectors is φ (in two-
dimensions, for three dimensions, α, β, and γ are used) 
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(b) The fundamental lattice vectors define a parallelogram (or parallelepiped in three 
dimensions) which we can call the “unit cell”.  While the choice of how to draw the 
fundamental lattice vectors may be arbitrary, conventions exist regarding the choice of 
the vectors and unit cell. 

(c) The vectors are chosen so that the unit cell is generally primitive.  A primitive unit cell is 
one where each unit cell is associated with a single lattice point.   

(d) However, where it’s appropriate to better represent the symmetry of lattice, a non-
primitive unit cell is chosen.  A non-primitive unit cell is associated with multiple lattice 
points. 

(e)  There are five plane lattices - these represent 4 lattice systems (oblique, square, 
hexagonal, and rectangular), each with a primitive unit cell, and with a non-primitive unit 
cell for the rectangular lattice system.  The rectangular non-primitive unit cell is called a 
centered or incentered cell.  Any two-dimensional lattice can be formed from one of 
these five plane lattices. 

 
Lattice system Lattice type Conventional 

representation 
Representative 
points 

Oblique Primitive a ≠ b    φ > 90° (0, 0) 
Square Primitive a = b    φ = 90° (0, 0) 
Hexagonal Primitive a = b    φ = 120° (0, 0) 

Primitive a ≠ b    φ = 90° (0, 0) Rectangular 
Centered a ≠ b    φ = 90° (0, 0), (½, ½) 

 
Figure 3 – 2: Plane lattices.  (Based on Table 3.1, page 70, Sherwood) 

 
 
More about Three-dimensional Crystal Lattices 
 
As mentioned above and shown in Figure 2 - 3, the unit cell is defined with lattice vectors a, b, 
and c, and the angles between the lattice vectors are called α, β, and γ. 
 

 
Figure 3 – 3:  Geometry of the unit cell in three dimensions (from Reference Website #4) 

 
There are 14 space lattice groups (known as the Bravais lattices).  The 14 Bravais lattices are 
developed by combining one of the seven crystal systems (cubic, hexagonal, tetragonal, 
orthorhombic, monoclinic, and triclinic) with one of the lattice centerings (body-centered, face-
centered, or centered on a single face). 
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In general, any lattice point in a primitive unit cell can be described in terms of r = pa + qb + rc, 
with p, q, and r being integers.  If the unit cell is non-primitive, p, q, and r may take on fractional 
values.  The conventional way of referring to a lattice point is by the ordered triplet (p, q, r) for 
example, (0,1,2). 
 
Later on, we’ll need to reference lattice planes.  Obviously, there are many planes that can be 
drawn through the regularly arranged points of a crystal lattice.  In order to define which set of 
planes we’re talking about, we’ll use conventional “Miller Indices” (hkl).  Miller Indices are 
defined as the reciprocals of the fractional intercepts which the plane makes with the lattice 
vectors.   

 
 

Figure 3 - 4:  Examples of Miller indices (from Reference Website #10) 
 
Note that (hkl) is a set of planes, and [hkl] is a direction.  Refer to the following website if you’re 
interested in more information about Miller indices: 
 
http://en.wikipedia.org/wiki/Miller_index
 
 
The Unit Cell or “Motif” of the Crystal 
 
As described above, a unit cell may be primitive (each unit cell associated with a single lattice 
point) or non-primitive (unit cell is associated with more than one lattice point).  The simplest 
possible case is a primitive unit cell with a single element “motif” – for example, the “motif” of 
slide B-3 (see Appendix A) is single dot.  However, the contents of the unit cell may be 
extremely complex, as shown in Figure 3 – 5. 
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Figure 3 - 5:  Unit cell of  fcc plutonium dioxide (from Reference Website #12). 

 
The contents of the unit cell may include many different atoms and molecules.  Analysis of the 
unit cell requires different information than the analysis of crystal lattice, as discussed in the 
following sections. 
 

4. Analysis of the Crystal Lattice Using Diffraction 
Techniques 
 
If we neglect for the moment the contents of the unit cell and just consider the diffraction effects 
from the lattice points, we can consider each of the lattice points as a perfect point scatterer (i.e. 
as a delta function).  To calculate the intensity maxima of the resulting diffraction patterns, either 
Bragg’s Law or the von Laue equations may be used, with identical results. 

 
Bragg’s Law relates the distance between lattice planes, dhkl, and the wavelength of the incoming 
wave, λ, with the scattering angle, θ.  The lattice planes are treated as planes of reflection, and 
it’s important to note that the spacing of importance in Bragg’s Law is between the lattice planes, 
rather than between the atoms themselves.  See the geometry in the diagram below. 

 

 
Figure 4 – 1:  Geometry for Bragg’s Law (based on a sketch from Reference Website #11) 
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For a three-dimensional crystal, the lattice planes which “reflect” will change as the crystal is 
rotated, and therefore the diffraction pattern will change. 
 
The von Laue equations can be derived from the Fourier transform relationship between the real 
space lattice and the reciprocal space lattice (modeling each as an infinite array of delta 
functions), and may be written as: 
 
Δk * a = 2 h π 
Δk * b = 2 k π 
Δk * c = 2 l π  
 
Where Δk is the difference between the incoming and the diffracted wave vectors (kin, kdiff), and 
a, b, and c are the lattice vectors described above (for primitive unit cells) or appropriate unit 
vectors which will comprise a primitive unit cell, if the unit cell is not intrinsically primitive.  As 
before, h, k, and l are integers.  Solutions of Δk that satisfy all three equations represent 
diffraction maximums. 
 
It can be shown that solutions to the above Laue equations are of the form: 
 
Δk = n * 2 π (h a* + k b* + l c*) 
 
Where a* , b*, and c* are defined to be the normals to the planes formed by the b and c axes, the 
a and c axes, and the a and b axes, respectively, and n is an integer. 
 
Defining G to be the reciprocal lattice vector 
 
Ghkl = h a* + k b* + l c* 
 
Which is perpendicular to the (hkl) set of planes in the real lattice, and has a magnitude  
 
| Ghkl | = 1 / dhkl
 
| Δk | = n * 2 π | Ghkl | = n * 2 π / dhkl 
 
since Δk = kin – kdiff, and | kin | = | kdiff | = 2 π / λ  
 

x

z

kin

Δk 
θ 

kdiff
 

Figure 4 – 2:  Geometry of the incoming and diffracted wave vectors, including the scattering angle θ 
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| Δk |  = 2 * | kdiff | sin θ = 4 π sin θ / λ 
 
4 π sin θ / λ = n * 2 π / dhkl
 
2 dhkl sin θ = n * λ 
 
A detailed tutorial on the real vs. reciprocal lattice can be found at this website: 

 
http://www.matter.org.uk/diffraction/Default.htm

 
The tutorial allows you to experiment by changing the dimensions of the real lattice to observe 
the effect on the reciprocal lattice. 
 

5. Analysis of the Contents of the Unit Cell 
 
This section discusses the effects of items c and d in the list at the beginning of Section 3: the 
placement of the atoms or molecules with respect to the lattice points and the arrangement of the 
electrons with respect to their associated atoms.  While the geometry of the crystal lattice will 
affect the geometry of the diffraction pattern spacing, or reciprocal lattice, the contents of the 
unit cell will affect the relative intensity of the diffraction maxima.  Specifically, the observed 
diffraction pattern from an actual crystal will show partial or complete “extinctions” compared to 
a “ideal” pattern which could be calculated from an infinite real lattice made up of perfect point 
scatterers, or delta functions.  The variation in intensity of the diffraction pattern maxima 
provides the information about the unit cell structure. 
 
Analysis of the unit cell contents begins with consideration of how a single electron scatters an 
incoming wave of electromagnetic radiation.  From experimental results, two types of scattering 
have been identified, Thomson scattering and Compton scattering. 
 
Thomson scattering can be understood from classical electromagnetic wave theory, assuming 
that the electron doing the scattering is free to move, and being accelerated by the incoming 
radiation, acts as a source of radiation itself.  Classical electromagnetic wave theory shows that 
the average magnitude of the electric field vector of the scattered waves, compared to the 
magnitude of the incident electric field is: 
 
Escat / Ein =  [e2 / (4 π ε0 r m c2)] * [(1 + cos2 2θ)/ 2] 
 
Where e is the electron charge, ε0 is the permittivity of free space (a constant equal to 8.854 x 10-
12 F/m), m is the electron mass, r is the distance between the electron and where the field is 
sampled, c is the speed of light, and θ is the Bragg or scattering angle.   
 
With this classical analysis, the principal of superposition holds, and so the contribution of each 
electron in the unit cell can be added up to find the net effect on the diffraction pattern: 
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(Escat)tot = (Escat)A + (Escat)B + … 
 
Defining the electron scattering factor fe = e2 / (4 π ε0 r m c2), the superposition principle leads to 
the result: 
 
Escat / Ein = ∑ fe exp { i * φ * n } 
                   n 

 
If, instead of considering discrete electrons, we consider an electron density function, ρ(r), 
continuous over some volume, and sum together the contribution the contribution from 
infinitesimal volume elements, we get the integral form of the summation, rather than the 
discrete form: 
 
E (Δk) =  ∫ fe  ρ(r) * exp { i (Δk · r) } dV. 
               unit cell 

 
Since the diffraction pattern is sampled at the reciprocal lattice points, hkl, it’s useful to define a 
discrete “Structure Factor”, Ehkl, (where the intensity of a given point is | Ehkl |2): 
 
              1  1  1 
Ehkl = V ∫ ∫ ∫ ρ(x,y,z) exp { 2π * i (hx+ky+lz) } dx dy dz 
             0 0 0 

 
To “back out” the contents of the unit cell, the function ρ(x,y,z) must be determined: 
 
ρ(x,y,z) = (1 / V) ∑ ∑ ∑ Ehkl exp { -2π * i (hx+ky+lz) } 
                            h    k    l 

 
This numerical calculation is called Fourier Synthesis, and it can require thousands of 
calculations to determine the electron density function for a single point (x, y, and z).  A 
complete structure analysis for a complicated molecule can require millions or hundreds of 
millions of calculations, and wasn’t practical for complicated molecules until high speed 
computers were available. 
 
Since the intensity (| Ehkl |2) of the diffraction pattern is all we can see with our eyes, or record 
with a CCD or using photographic methods, the phase information associated with  Ehkl is lost.  
Therefore, it is impossible to directly solve for ρ(x,y,z) using the observed diffraction pattern and 
the last equation given above.  This is referred to as the “Phase problem”, and to work around it, 
crystallographers generally use approximation and iteration (except for some small, simple 
molecules), to determine the unit cell contents. 
 
One final note is that Compton scattering, which uses the Quantum Mechanical concept of 
electromagnetic radiation being carried in packets as photons, and a “billiard ball” model of the 
collision of the photon with the electron, does not result in discrete diffraction effects, but rather 
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overall background scattering.  In the collision of the photon with the electron, momentum is 
conserved, but the wavelength of the input radiation is changed.  There is no well-defined phase 
relationships between the radiation being scattered from different electrons in the assembly, and 
with no well-defined phase relationship, the superposition principle discussed above for 
Thomson scattering, doesn’t hold.  Sometimes Compton scattering is referred to as incoherent 
scattering, and Thomson scattering as coherent scattering. 
 
 

6. Convolution 
 
We’ve discussed that the diffraction pattern is the Fourier transform of the real space geometry 
of the crystal, and that this is true whether we’re talking about the geometry of the overall crystal 
(shape function), the crystal lattice (infinite lattice), or the contents of the unit cell (motif). 
 
f(obstacle) = f(motif) * [f(infinite lattice) x f(shape function)] 

 

                      (Convolution) 

 

 

Figure 6 – 1:  Convolution of a single rectangle (motif) with a lattice, results in a lattice of rectangles. 
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   |___________| 
              a 

 
Fourier transform 

 

 

 

Figure 6 – 2: The Fourier transform operation on a real lattice (top) yields the reciprocal lattice (bottom) 

|_| 
1/a 

                 Fourier Transform          

Figure 6 – 3: The Fourier transform of a single rectangle yields the pattern on the right. 
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                Fourier transform  

 

 

 

(Multiply the Fourier transforms of the motif and the lattice) 

            

 

Figure 6 – 4:  The Fourier transform of the lattice of rectangles is shown in the upper right hand corner.  It is the 
product of the Fourier transform of the rectangle and the Fourier transform of the lattice. 

The above figures show pictorially that the Fourier transform of the convolution of the motif 
with the lattice is the product of the individual transforms of the motif and the lattice.  More 
generally: 

Diffraction pattern amplitude F(sinθ) = T f(motif) x [Tf(infinite lattice) * Tf(shape function)] 
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Recall the definition and view an animated example of the convolution theorem by visiting this 
website: 

http://mathworld.wolfram.com/Convolution.html

The effect on convolution can be seen in the diffraction pattern as an “enveloping” of the 
transform of the infinite lattice (idealized with perfect point scatterers) with the transform of the 
motif (assumes the transform of the shape function isn’t affecting the result). 

See a graphical example at this website: 

http://www.mineralogie.uni-wuerzburg.de/crystal/teaching/conv_a.html

Below are some additional pictorial examples, from the “Diffraction and Fourier Transform” 
program at the following website: 
 
http://escher.epfl.ch/fft/
 

 
 

Figure 6 – 5:  Fourier Transform of a single dot, and of a rectangular array of dots 
 
 

 
 

Figure 6 – 6:  Fourier Transform of a single right triangle, and of a rectangular array of right triangles 
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Student exercise #3: Use a laser to view the diffraction patterns from slides B-3 and B-4.  
Without reading the legends, can you determine the shape of the motif (or the size, as applicable) 
for each of the optical crystals?   How can you tell? 
 

7. The Effect of Wavelength - the Ewald Sphere  
 
The Ewald sphere is a geometric construction which shows the relationships between the 
wavelength of the incident radiation, λ, the diffraction pattern (reciprocal lattice), and the 
scattering angle, θ.  For simplicity, we’ll discuss a two-dimensional representation of the Ewald 
sphere (a circle).  See Figure 7 - 1 below, which is similar to Figure 4 – 2 in showing the 
relationship between the incoming and diffracted wave vectors kin and kdiff, and the scattering 
angle, θ.   

 

x 

(5, 0) 

(4, 0) 

(1, 0) 

(2, 0) 

(3, 0) 

kin
(0, 0) 

z 

(-5, 0) 

(-4, 0) 

(-3, 0) 

(-2, 0) 

(-1, 0) 
Δk 

kdiff

2θ 

 Figure 7 – 1: Two-dimensional representation of the Ewald sphere – a circle. 
 
The Ewald circle is generated using the following steps: 
 
1)  Starting at the origin of the reciprocal lattice, a circle (or sphere, in three dimensions) is 
drawn with radius equal to the magnitude of the kin and kdiff vectors (remember that kin and kdiff 
have the same magnitude, equal to 2 π / λ). 
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2)  The origin of the circle is determined by the direction of the incoming wave vector, kin.  The 
head of the kin vector is at the origin of the reciprocal lattice, and the tail defines the origin of the 
circle.  
 
The significance of the Ewald circle (or sphere) is that diffraction maximums occur where the 
lattice points intersect the circle, because the intersection indicates that the Bragg condition is 
satisfied.  
 
Note that in Figure 7 – 1, the reciprocal lattice geometry is represented by the long green rods 
parallel to the z axis, where the z axis is the direction of the incoming wave vector.  This is 
intended to represent the diffraction geometry of the two-dimensional optical crystals that we’ve 
been using in this experiment.  Recall the statement in Section 2, that the Fourier transform of a 
delta function is infinitely broad.  The optical crystals can be considered a delta function in the 
axis parallel to the incoming wave vector.   
 
While the optical crystal slides are a simplification of “real crystals”, it should be noted that 
crystallographers often use thin samples of material for structural analysis, with the result that 
reciprocal lattice points are elongated, and diffraction occurs even when the Bragg condition is 
not exactly satisfied.  See the diagram at the following website for a graphical representation of 
this situation: 
 
http://www.microscopy.ethz.ch/ED-Ewald.htm
 
To get a better sense of the three-dimensional Ewald sphere, run the “Ewald sphere animation” at 
the following website: 
 
http://lcr.epfl.ch/page37304-en.html
 
The animation shows the reciprocal lattice rotating about the reciprocal lattice origin, while the 
incoming wave vector and the Ewald sphere remain stationary.  A number of experimental 
methods for analyzing crystals involve rotating the crystal and capturing the resulting diffraction 
patterns on film (or with a CCD).  In the animation you’ll see yellow arrows indicating the 
intersections of the Ewald sphere with the reciprocal lattice – these are where the diffraction 
maximums would be recorded. 
 
More animations are shown at the following website: 
 
http://www.science.uva.nl/research/cmp/goedkoop/group/docs/fluctuations/scans.html
 
The animations on this website are interesting because they show different experimental methods 
for recording diffraction patterns. 
 
Student exercise #4: Draw the reciprocal lattice geometry in both the x and the y axes, for the 
0.12mm x 0.08mm real lattice (the geometry used in several of the optical crystal slides), using 
wavelengths equal to the red and green lasers (use an appropriate scale).  What is the effect of 
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the wavelength on the Ewald sphere (circle) and on the diffraction pattern?  (Note: it’s 
interesting to use the optical crystals with both the red and the green lasers, to observe the effect 
of wavelength more directly.) 
 

8. Symmetry of the Crystal Lattice and the Diffraction 
Pattern 
 
Please refer again to Appendix B for a detailed description of the symmetry operations, the 17 
space groups, and standard notation for describing each of the 17 space groups.  Following are 
some of the key concepts related to these points: 
 

(a) There are 6 symmetry operations: 
 

Proper rotation 
Reflection 
Inversion = rotation + reflection 
Screw rotation = rotation + translation 
Glide = reflection +  translation 
Improper rotation = rotation + inversion 

 
(b) The 17 space groups represent all the possible symmetries in two dimensions.   As 

mentioned earlier, symmetry operations on the unit cell are used to fill space to form a 
complete crystal lattice.   

 
(c) The standard notation for describing the 17 space groups is as follows: 

first letter is the lattice type, either a p (primitive cell) or c (centered rectangular). 
the next three characters may be either numbers or letters, to indicate the following 
symmetries:  

m (mirror),  
g (glide),  
1 (none),  
and a digit n to indicate the n-fold rotation (n = 2, 3, 4, 6).   

 

For example, a “p2” notation indicates a primitive cell with 2-fold rotation and no mirrors or 
glides, whereas the “p4gm” notation indicates a primitive cell with 4-fold rotation, and mirror 
axes oriented 45o to a glide.  Similar notation and classification methods are used for three 
dimensional crystals. 
 
Use the slides in the binder to view the diffraction pattern of each one of the 17 space groups.  
Notice that each one of the 17 space groups has been generated with a “motif” of right triangles 
and dots.  For reasons of consistency, all of the examples in this section are of the dot motif. 
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p1 dots 

 
  

p2gg dots 

 
 
Figure 8 – 1:  Real space patterns and photographs of diffraction patterns (not to scale) for the p1 and the p2gg space 

groups. 
 
Notice the symmetry of the diffraction pattern compared to the real space lattice.  Also notice the 
complete and partial “extinctions” in the diffraction pattern.  Crystallographers use this 
information to determine the structure of three-dimensional crystals - the diffraction pattern from 
an unknown sample can be compared to characteristics of known samples. 
 
Let’s say, for example, you were trying to determine the real space structure associated with the 
diffraction pattern shown in Figure 8 – 2. 
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Figu  crystal 

ining that the 
mmetry of the real space pattern is even, perhaps 2 or 4.  You may have noticed from previous 

          

 given reciprocal lattice point hkl, and a point –h, -k, -l which is centrosymmetrically 
lated: 

 fj exp (2πi (h j + ky j + lz j))
          

  ∑ fj exp (-2πi (h j + ky j + lz j)) 

                j 

k, -l)

| 

 of each point is equal to |Fhkl |2, we will observe centrosymmetry of the 
iffraction pattern, even if the lattice is not centrosymmetric.   

 

 
 

re 8 – 2:  Photograph of the diffraction pattern from an unknown optical
 
By exam  the symmetry of the diffraction pattern, you may be able to determine 
sy
examples that the symmetry of the diffraction pattern has the same, or one degree higher, 
symmetry as the real space pattern.  The reason for this is shown below. 
 
Another way to write the Structure Factor discussed in Section 5 is: 
 
Fhkl =  ∑ fj exp (2πi (h j + ky j + lz j)) 

j   
 
For some
re
 
Fhkl =  ∑  

j   
 
F(-h,-k,-l) =
  
 
Fhkl

*
  =  F(-h, -

 
|Fhkl | =  |F(-h, -k, -l)
 
Since the intensity
d
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tion pattern shown.  The 

llowing website allows you to quickly generate and view the diffraction patterns for the unit 

One way to determine the real space structure of the unknown optical crystal in Figure 8 – 2
would be to use computer simulation to try to match the diffrac
fo
cells and lattices generated from the 17 space groups (using “JFourier2” under Java applets): 
 
http://jcrystal.com/steffenweber
 
However, an even more powerful tool is the Diffraction and Fourier Transform (DFT) program 
at this website: 
 
http://lcr.epfl.ch/page37304-en.html
 
This program allows you to generate simple patterns using the graphical tools included with the 

loped from any graphics program as long as it has been 
e “Advanced” button to open and save files).   

hotograph of 
e diffraction pattern from the optical crystal slide. 

program, or to load in a pattern deve
saved as a *png, *.gif, or *.jpg file type (use th
Also at the website above is a program “Escher Web Sketch” that allows you to build your own 
patterns (“decorate” any of the 17 space groups with the motif of your choosing). 
 
The following figures show the output of the DFT program, together with real space pattern 
(used to make the optical crystal slide and as input to the DFT program), and the p
th
 

 

 
Figure 8 – 3: Clockwise from upper left: the real space pattern for the p3 space group, the calculated diffraction 

pattern, the calculated diffraction pattern magnified, and the photograph of the p3 diffraction pattern. 
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Figure 8 – 4: Clockwise from upper left: the real space pattern for the p6 space group, the calculated diffraction 
pattern, the calculated diffraction pattern magnified, and the photograph of the p6 diffraction p tern. 

 
The calculated diffraction patterns shown in the above figures were generated from the 
“Magnitude” view of the FT using the DFT program.  Particularly in the magnified view of the 
calculated diffraction pattern, you can see the close match between it and the photograph of the 
diffraction pattern.   
 
Back to the earlier discussion about symmetry of the diffraction pattern, notice that both the p3 
and p6 diffraction patterns shown above have 6-fold symmetry.  The patterns are distinctly 
different however, with respect to the partial and full extinctions of the diffraction maxima. 
 
Student exercise #5:  Using the Diffraction ransform program, calculate the 
diffraction patterns for the p2mm, p2gg, p4mm, and p4gm space groups.  Using these results, 
identify the space group associated w

at

 and Fourier T

ith Figure 8 – 2, and Figure 8 – 5, below. 
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Figure 8 – 5:  Photograph of the diffraction pattern from another unknown optical crystal 
 
More features of the Diffraction and Fourier Transform Program 
 
The Diffraction and Fourier Transform program calculations can be graphically displayed in a 
variety of ways, including Complex, Real Part, Imaginary Part, Magnitude, and Phase options. 
 

  

  
 

Figure 8 – 6:  Clockwise from upper left: output of the DFT program for the p6 space group, using the Complex, 
Real Part, Imaginary Part, and Phase options.  Magnitude is shown in Figure 8 – 4. 
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The “Magnitude” option is comparable to what your eye, a CCD, or the camera “sees” 
(remember that the diffraction pattern intensity = | E (k) | 2).  The other options can be 
understood by referring back to the diffraction pattern equation in Section 2:  
 
E (k) =  ∫ f (r) * exp { i (k · r) } dV 
 
The “Complex” option is the complete solution to the equation, “Real Part,” “Imaginary Part” 
and “Phase” are self-explanatory.  Performing the “FFT-1” (inverse Fourier Transform) on each 
option is interesting, in particular for the “Magnitude” option, because the program output 
graphically shows the “Phase problem” discussed in Section 5.  
 

 also allows you to place a ma
re

ls, there 

lated diffraction pattern and performing the inverse 

The Diffraction and Fourier Transform program sk on either the 
al space lattice (simulates the effect of a small, finite crystal) or on the calculated diffraction 

ates the effects of limited size of the recording device, as an example).pattern (simul    
 
The effect of small crystal size was discussed briefly in Section 3 – for very small crysta
will be noticeable subsidiary maxima between the main diffraction maxima.   
 
The effect of placing a mask on the calcu
Fourier Transform is to lose resolution on the calculation of the real space geometry.  This is an 
intuitively obvious result – less available data results in a less precise calculation. 
 

 

 
 

Figure 8 – 7:  Clockwise from upper left – each picture shows the effect of placing successively smaller masks on 
the calculated “Complex” diffraction pattern of the DFT program, and performing the inverse Fourier Transform 

(for the p6 space group).  The original real space pattern is shown in Figure 8 – 4. 
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9. Conclusion 
 
Diffraction describes what happens when a wave interacts with an obstacle.  The diffraction 
pattern which results from this interaction contains information about the structure of the 
obstacle - the diffraction pattern amplitude is the Fourier transform of the geometry of the 
obstacle. 
 
When the obstacle is a crystal, each component of the crystal geometry can be important for 
understanding the diffraction pattern.  A crystal is made up of ordered arrays of atoms

etry of the array, or lattice, determines the geometry of the reci ocal 
l
d
finite size of th le subsidiary 

 peaks of the diffraction pattern. 

he diffraction pattern is affected by the wavelength of the incoming wave.  This effect can be 

e 

he symmetry of the crystal can be analyzed by observing the symmetry of the diffraction 

raction 
e 

 dimensions. 

 or 
prmolecules.  The geom

attice, while the arrangement of the atoms and molecules (the contents of the unit cell), 
etermines the enveloping function for the reciprocal lattice.  If the crystal is very small, the 

e crystal can also affect the diffraction pattern - there will be noticeab
maxima between the main
 
T
understood by using the Ewald sphere (or circle in two dimensions), a simple geometrical 
construction relating the wavelength of the incoming wave with the scattering angle and th
reciprocal lattice. 
 
T
pattern (the diffraction pattern has the same, or one degree higher, symmetry as the real space 
pattern), and by observing the full or partial extinctions of the diffraction peaks in the diff
pattern.  Analysis of the full and partial extinctions is beyond the scope of this paper.  See th
texts in the References section (for example, Sherman) for more information if desired. 
 
Most of the discussion and experiments in the preceding sections focused on two-dimensional 
geometries - in most cases, there is a direct analogy to three
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Appendix A – The “B” Numbered Slides 
 
 
B-1.1  
 
A gas of large 
diamonds 

 
B-1.2 
 
A gas of small 
diamonds 

 
B-1.3 
 
A gas of large 
squares 

 

 
Page 33 of 64 



Experiments in Diffraction Using Optical Crystals and Computer Simulation 
__________________________________________________________________ 

 

______________________________________________________________________________ 

B-1.4 
 
A gas of small 
squares 

 
B-2.1 
 
A gas of triangles 

 
B-2.2 
 
A gas of dots 

 
B-2.3 
 
A gas of rectangles 
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B-2.4 
 
A gas of crosses 

 
B-3.1 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-3.2 
 
Dots (circles), 0.01 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-3.3 
 
Dots (circles), 0.04 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm 
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B-3.4 
 
Dots (circles), 0.03 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-4.1 
 
Squares, 0.02 mm 
each side, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-4.2 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-4.3 
 
Triangles, 0.02 mm 
in height, in a 
rectangular array, 
0.08 mm x 0.12 mm 
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B-4.4 
 
Rectangles, 0.02 mm 
x 0.04 mm, in a 
rectangular array, 
0.08 mm x 0.12 mm 

B-5.1 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm, 
with approximately 
40% of the dots 
displaced from 
nominal position 

 

B-5.2 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm, 
with approximately 
20% of the dots 
displaced from 
nominal position 

 

B-5.3 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm, 
with vertical 
stacking errors 
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B-5.4 
 
Dots (circles), 0.02 
mm in diameter, in a 
rectangular array, 
0.08 mm x 0.12 mm, 
with horizontal 
stacking errors 
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Appendix B – Extract from TBD “Two-dimensional patterns, 
lattices, and symmetry” 
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